期刊文献+

三维颅骨形态量化表示与非线性性别判定 被引量:3

Nonlinear sex determination and three dimensional quantitative representation of the skull morphology
下载PDF
导出
摘要 颅骨性别鉴定在法医学和面貌复原等领域具有重大研究意义和应用价值.本文以陕西关中地区94例汉族成年人三维颅骨数据为研究对象,利用自主研发的系统软件标定出62个显著特征点.在此基础上提取可测量和非可测量特征,并将非可测量特征进行量化表示;提出使用非线性降维方法和非线性分类器结合的方法对颅骨的性别进行分类.实验结果表明:本文整合的可测量和非可测量特征包含更多的性别判别信息,非线性降维与非线性分类结合的方法可以大幅提高性别判别精度,最高正确率可达到96.36%. Sex identification based on 3Dskull morphology has great significance and application value in forensic science and in facial reconstruction.Ninety four(94)skull samples from Shaanxi Province were used in the present study.Home-made software and knowledge of forensic science and anatomy were used to calibrate62 salient feature points;Both non-measurable and measurable feature points were extracted,and the nonmeasurable characteristics of the skull were quantified.The combination of nonlinear dimension reduction and nonlinear classifier enabled sex determination.It was found that all fusion characteristic can obtain more gender discrimination information.The method of nonlinear dimension reduction and nonlinear classifier enhanced the accuracy and outperformed most of the state-of-the-art methods.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期19-23,共5页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(61373117) 高等学校博士学科点专项科研基金资助项目(20136101110019) 研究生自主创新基金资助项目(YZZ15098)
关键词 性别判定 非测量特征 可测量特征 量化表示 非线性分类 sex determination non-measurable characteristic measurable characteristic quantitative representation nonlinear classification
  • 相关文献

参考文献3

二级参考文献26

  • 1Huang R, Liu Q S, Lu H Q, et al.Solving the small sample size problem of lda[C]//Proceedings of ICPR, 2002:29-32.
  • 2Cevikalp H, Neamtu M, Wilkes M, et al.Discriminative common vectors for face reeognition[J].IEEE Trans on PAMI, 2005,27 (1):4-13.
  • 3Kong H,Teoh E K,Wang J G,et al.Two dimensional fisher discriminant analysis:Forget about small sample size problem[C]// Proceedings of ICASSP, 2005 : 761-764.
  • 4Belhumeur P N,Hespanha J,Kfiegman D J.Eigenfaces vs fisher- faces:Recognition using class specific linear projection[J].IEEE Trans on PAMI, 1997,19(7) :711-720.
  • 5Fisher R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenics, 1936,7 : 179-188.
  • 6Chen L F,Liao H Y M,Lin J C,et al.A new LDA-based face recognition system which can solve the small sample sizeproblem[J].Pattem Recognition,2000,33(10) : 1713-1726.
  • 7Swets D L, Weng J.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans on PAMI, 1996, 18(8) :831-836.
  • 8Raudys S,Duin R P W.Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix[J].Pattern Recognition Letters, 1998,19(5) :385-392.
  • 9Lu J,Plataniotis K N,Venetsanopotdos A N.Regularized discriminant analysis for the small sample size problem in face recognition[J].Pattern Recognition Letter, 2003,24(16) : 3079-3087.
  • 10Howland P, Park H.Generalizing discriminant analysis using the gcnvralized singular value decomposition[J].IEEE Trans on PAMI, 2004,26(8) : 995-1006.

共引文献18

同被引文献7

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部