期刊文献+

Oscillatory hyper Hilbert transforms along general curves 被引量:2

Oscillatory hyper Hilbert transforms along general curves
原文传递
导出
摘要 We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x) = ∫0^∞ f(x - Г(t))eit-βt-(1+α)dt, where Г(t) = (t, γ(t)) in R^2 is a general curve. When γ is convex, we give a simple condition on γ such that Hγ,α,βis bounded on L2 when β ≥ 3α, β 〉 0. As a corollary, under this condition, we obtain the LP-boundedness of Hγ,α,β when 2β/(2β - 3α) 〈 p 〈 2β/(3α). When F is a general nonconvex curve, we give some more complicated conditions on γ such that Hγ,α,βis bounded on L2. As an application, we construct a class of strictly convex curves along which Hγ,α,β is bounded on L2 only if β 〉 2α 〉 0. We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x) = ∫0^∞ f(x - Г(t))eit-βt-(1+α)dt, where Г(t) = (t, γ(t)) in R^2 is a general curve. When γ is convex, we give a simple condition on γ such that Hγ,α,βis bounded on L2 when β ≥ 3α, β 〉 0. As a corollary, under this condition, we obtain the LP-boundedness of Hγ,α,β when 2β/(2β - 3α) 〈 p 〈 2β/(3α). When F is a general nonconvex curve, we give some more complicated conditions on γ such that Hγ,α,βis bounded on L2. As an application, we construct a class of strictly convex curves along which Hγ,α,β is bounded on L2 only if β 〉 2α 〉 0.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第2期281-299,共19页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11671363, 11471288, 11371136), the Natural Science Foundation of Zhejiang Province (No. LY14A010015), and the China Scholarship Council.
关键词 Hilbert transform oscillatory integral oscillatory hyper Hilberttransform Hilbert transform, oscillatory integral, oscillatory hyper Hilberttransform
  • 相关文献

参考文献1

二级参考文献6

  • 1Zielinski, M.: Highly Oscillatory Singular Integrals along Curves, Ph.D Dissertation, University of Wiscons- in-Madison, Madison WI, 1985.
  • 2Chandarana, S.: L^P-bounds for hypersingular integral operators along curves. Pacific J. Math., 175(2), 389-416 (1996).
  • 3Chandarana, S.: Hypersigular integral operators along space curves. Preprint.
  • 4Chen, J. C., Fan, D., Wang, M., et al.: LP bounds for oscillatory hyper-Hilbert transform along curves. Proc. Amev. Math. Soc., 136(9), 3145-3153 (2008).
  • 5Chen, Y. P., Ding, Y., Fan, D.: A parabolic singular integral operator with rough kernel. J. Aust. Math. Soe., 84(2), 163-179 (2008).
  • 6Stein, E. M.: Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N J, 1993.

共引文献6

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部