期刊文献+

基于标签语义距离的图像多样化检索

Image Diversity Retrieval Based on Semantic Distance of Tags
下载PDF
导出
摘要 随着互联网图像资源的爆炸式增长,用户对图像多样化检索的需求愈发强烈。本文在对比图像视觉特征和图像文本内容算法的基础上,探讨不同标签语义距离算法在多样化检索中的效果,通过实验提供一种较好的基于标签语义距离的图像多样化检索算法。 With the explosive growth of image resources on the internet, the need for image diversity retrieval is becoming stronger. Comparing the visual characteristics and context description using the image diversity retrieval, this paper discusses the effect of different semantic distance algorithms (WordNet、ESA and Google Distance) in image diversity retrieval. At the same time, an image diversity retrieval algorithm has been provided in this paper, which based on the best of the semantic distance algorithms.
出处 《数字图书馆论坛》 CSSCI 2017年第2期34-39,共6页 Digital Library Forum
基金 海南省哲学社会科学规划课题"气候变化对海岛型旅游目的地游客流的影响及应对策略研究"(编号:HNSK(GJ)13-96) 中国科学技术信息研究所与武汉大学合作项目"科学文献的语义功能识别与深度利用研究"资助
关键词 标签语义距离 社会化标签 图像多样化检索 语义相似度 Semantic Distance of Tags Social Tag Image Diversity Retrieval Semantic Similarity
  • 相关文献

参考文献4

二级参考文献149

  • 1卜小蝶.浅谈社会性标记之意涵与应用[EB/OL].[2007-08-15].http://www.1ib.tku.edu.tw/libintro/pub/web20&lib_semina/social.tag_ft.pdf.
  • 2Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2000, 22(12): 1349- 1380.
  • 3Ames M, Naaman M. Why we tag: Motivations for annota- tion in mobile and online media//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. San Jose, USA, 2007: 971- 980.
  • 4Wu L, Yang L, Yu N, Hua X S. Learning to tag//Proceed- ings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:361-370.
  • 5Akbas E, Yarman Vural F T. Automatic image annotation by ensemble of visual descriptors//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
  • 6Sigurbj6rnsson B, van Zwol R. Fliekr tag recommendation based on collective knowledge//Proeeedings of the 17th International Conference on World Wide Web. Beijing, China,2008:327-336.
  • 7Freund Y, Iyer R, Schapire R E, Singer Y. An efficient boosting algorithm for combining preferences. The Journal of Machine Learning Research, 2003, 4:933-969.
  • 8Liu D, HuaXS, YangL, WangM, ZhangHJ. Tag rank- ing//Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:351-a60.
  • 9Wu L, Li M, Li Z, Ma W Y, Yu N. Visual language model- ing for image classification/Proceedings of the international workshop on multimedia information retrieval. Augsburg, Germany, 2007:115-124.
  • 10Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003z 1470 1477.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部