期刊文献+

逃逸离散差分进化算法在齿轮传动优化中的应用

Application of Escape Discrete Differential Evolution Algorithm in Optimal Design of Gear Transmission
原文传递
导出
摘要 根据决策变量映射关系,将齿轮传动设计中的离散约束优化问题转化为约束非负整数规划问题(Constrained non-negative integer programming problems,CNIPPs),并应用离散差分进化(Discrete differential evolution,DDE)算法求解该问题。引入定量评价种群多样性的平均基因距离指标,并据此提出一种采用反向学习算子生成新个体的自适应逃逸策略,以克服基本DDE算法求解离散问题易陷入局部最优区域的缺点。将逃逸策略融入DDE算法,并结合可行性规则约束处理技术,形成求解CNIPPs的逃逸离散差分进化(Escape DDE,EDDE)算法。应用EDDE算法求解齿轮传动优化设计实例,并提出用于比较多种算法优化性能的相对综合性能指标。通过测试与分析可知,新算法具有良好稳健性和可靠性,且综合指标优于对比算法。优化结果明显好于已有文献的最优解,齿轮质量下降了27%。 According to the equivalent mapping relation of decision variables, the constrained discrete optimization problems for gear transmission design are transformed into nonlinear constrained non - negative integer programming problems (CNIPPs) and a discrete differential evolution (DDE) algorithm is used to solve these problems. An index of average gene distance is introduced to evaluate quantitatively the population diver- sity. On this basis, this work presents an adaptive escape strategy in which an opposite -based learning opera- tor is employed to generate new individuals to overcome the drawback that the basic DDE algorithm easily traps into local optimal regions for solving discrete optimization problems. Thus this study embeds the escape strate- gies in DDE algorithm, adopts feasibility rules to handle constraints, and forms to an escape DDE (EDDE) algorithm for s01ving CNIPPs. The proposed EDDE algorithm is applied to approach a real case of gear transmis- sion optimization and an index of relative comprehensive performance is presented to compare several algorithms on optimization performances. The experimental and analytical results show that this novel algorithm has good robustness and reliability and is better than compared ones in term of the comprehensive index. Furthermore, the obtained result is better than one of the published literature and the corresponding gear mass is decreased by 27%.
出处 《机械传动》 CSCD 北大核心 2017年第1期36-42,共7页 Journal of Mechanical Transmission
基金 重庆市教育委员会科学技术研究项目(KJ1403201) 人工智能四川省重点实验室开放基金资助项目(2013RYJ02)
关键词 差分进化算法 离散变量 自适应逃逸算子 约束优化设计 齿轮传动 Differential evolution algorithm Discrete variableoptimal design Gear transmissionAdaptive escape operator Constrained
  • 相关文献

参考文献6

二级参考文献72

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2罗贤海,张仁宏,曹坤,石有生.改进遗传算法及其在齿轮传动优化设计中的应用[J].机械设计与研究,2006,22(2):64-67. 被引量:10
  • 3王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 4吴亮红,王耀南,陈正龙.求解混合整数非线性规划问题的改进差分进化算法[J].小型微型计算机系统,2007,28(4):666-669. 被引量:26
  • 5STORN R,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 6AYDIN S,TEMELTAS H.Fuzzy-differential evolution algorithm for planning time-optimal trajectories of a unicycle mobile robot on a predefined path[J].Advanced Robotics,2004,18(7):725-748.
  • 7STORN R.Designing nonstandard filters with differential evolution[J].IEEE Signal Processing Magazine,2005,22(1):103-106.
  • 8NOBAKHTI A,WANG Hong.A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier[J].Applied Soft Computing,2008,8(1):350-370.
  • 9AL-ANZI F S,ALLAHVERDI A.A self-adaptive differ-enttial evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times[J].European Journal of Operational Research,2007,182(1):80-94.
  • 10WANG Ling,PAN Quanke,SUGANTHAN P N,et al.A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems[J].Computers and Operations Research,2009,37(3):509-520.

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部