期刊文献+

基于用户隐式兴趣模型的信息推荐 被引量:8

Information recommendation based on user's interest model
原文传递
导出
摘要 信息推荐技术能够帮助用户从海量网络信息中提取有用信息,因而得到研究者的广泛关注。通过建立用户隐式特征兴趣模型,即将用户-行为矩阵分解为用户-隐式兴趣-行为矩阵,在充分挖掘用户隐式兴趣的基础上,研究并实现了基于隐式特征兴趣模型的协同过滤算法。在Movielens语料集上进行测试的结果表明,隐式特征能够更加精准地表述用户兴趣,有效提升信息推荐性能。 Information recommendation technology can help users filtering out useful content from the huge amount of information on the Internet, thus attracts a wide range of researchers' attention. In this paper, we proposed a collaborative recommendation algorithm based on the user's interest by using latent factor model, which captured the users' implicit interests by decompose the User-Behavior matrix into a product of a User-Implicit matrix and an Interest-Behavior matrix. The experimental results in the MovieLens data sets show that the implicit characteristic can reflect the users' interest more precisely than explicit characteristics, as a result, improving the recommendation performance as an expectation.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期15-22,共8页 Journal of Shandong University(Natural Science)
基金 广西高校云计算与复杂系统重点实验室资助项目(15205)
关键词 信息推荐 个性化推荐 用户兴趣模型 隐语义模型 协同过滤 information recommendation personalized recommendation user's interest model latent factor model, col- laborative filtering
  • 相关文献

参考文献7

二级参考文献100

  • 1孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 2Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 3Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 4Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 5Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 6Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 7Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237.
  • 8Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53.
  • 9Basu C,Hirsh H,Cohen W W.Recommendation as classification:using social and content-based information in recommendation[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:714-720.
  • 10Sarwar B M,Karypis G,Konstan J A,et al.Analysis of recommendation algorithms for e-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC'00).New York:ACM Press,2000:285-295.

共引文献571

同被引文献48

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部