摘要
信息推荐技术能够帮助用户从海量网络信息中提取有用信息,因而得到研究者的广泛关注。通过建立用户隐式特征兴趣模型,即将用户-行为矩阵分解为用户-隐式兴趣-行为矩阵,在充分挖掘用户隐式兴趣的基础上,研究并实现了基于隐式特征兴趣模型的协同过滤算法。在Movielens语料集上进行测试的结果表明,隐式特征能够更加精准地表述用户兴趣,有效提升信息推荐性能。
Information recommendation technology can help users filtering out useful content from the huge amount of information on the Internet, thus attracts a wide range of researchers' attention. In this paper, we proposed a collaborative recommendation algorithm based on the user's interest by using latent factor model, which captured the users' implicit interests by decompose the User-Behavior matrix into a product of a User-Implicit matrix and an Interest-Behavior matrix. The experimental results in the MovieLens data sets show that the implicit characteristic can reflect the users' interest more precisely than explicit characteristics, as a result, improving the recommendation performance as an expectation.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第1期15-22,共8页
Journal of Shandong University(Natural Science)
基金
广西高校云计算与复杂系统重点实验室资助项目(15205)
关键词
信息推荐
个性化推荐
用户兴趣模型
隐语义模型
协同过滤
information recommendation
personalized recommendation
user's interest model
latent factor model, col- laborative filtering