期刊文献+

一类具有时滞的周期流行病模型的动力学分析 被引量:1

Dynamical analysis of a class of periodic epidemic model with delay
原文传递
导出
摘要 利用动力系统的方法,研究了一个带有时间周期和时滞的细菌传播模型,通过对相应周期特征值问题的分析,建立了系统的全局动力学。 A time-periodic and delayed epidemic system modeling the spread of bacteria is studied by method of dynam- ical systems. In terms of corresponding periodic eigenvalue problem, we establish the global dynamics of the system.
作者 王双明
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期81-87,97,共8页 Journal of Shandong University(Natural Science)
基金 兰州财经大学校级科研项目(Lzufe201622)
关键词 时滞 周期流行病模型 正周期解 全局吸引性 delay periodic epidemic model positive periodic solutions global attractivity
  • 相关文献

参考文献1

二级参考文献12

  • 1J]N Yu, ZHAO Xiao-qiang. Spatial dynamics of a non-local periodic reaction diffusion model with stage structure[J]. SIAMJ Math Anal, 2009, 40(23): 2496-2516.
  • 2GOURLEY S, KUANG Y. Wavefronts and global sta?bility is a time-delayed population model with stage structure[J]. R Soc Lond Proc, Ser A: Math Phys Eng Sci, 2003, 459(2034): 1563-1579.
  • 3GOURLEY S, SoJ, WuJ. Non-locality of reaction?diffusion equations induced by delay: biological modeling and nonlinear dynamics[J).J Math Sci, 2004, 124(4): 5119-5153.
  • 4SoJ, WuJ, Zou X. A reaction-diffusion model for a single species with age structure: I. traveling wave fronts on unbounded domains[J]. Proc R Soc Lond A, 2001, 457(2012): 1841-1853.
  • 5THIEME H, ZHAO Xiao-qiang. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models[J].J Differen?tial Equations, 2003, 195(2): 430-470.
  • 6Xu Da-shun, ZHAO Xiao-qiang. A non local reaction?diffusion population model with stage structure[J]. Can Appl Math Q, 2003, 11(3): 303-320.
  • 7LIANG Xing, YI Ying-fei, ZHAO Xiao-qiang. Spread?ing speeds and traveling waves for periodic evolution systems[J].J Differential Equations, 2006, 21(231): 57-77.
  • 8PETER Hess. Periodic-parabolic boundary value problems and positivity[M). Essex: Longman Sci?entific and Technical, 1991: 20-38.
  • 9MARTIN R, SMITH H. Abstract functional differ?ential equations and reaction-diffusion systems[J]. Trans Amer Math Soc, 1990,321(1): 1-44.
  • 10SMITH H. Monotonic dynamical systems: an intro?duction to the theory of competitive and coopera?tive systems[Mil /Mathematical Surveys and Mono?graphs. Providence: American Mathematical Soci?ety, 1995: 124-126.

共引文献5

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部