期刊文献+

一类高斯序列极值的强律

Strong laws for extreme values from a class of Gaussian sequences
原文传递
导出
摘要 证明了一类高斯序列极值的强律,该高斯序列既不是相互独立的,也没有对相关系数做任何假设。 In this paper,our goal is to prove the strong laws theorem for extreme values from a class of Gaussian sequences. The Gaussian sequence is neither mutually independent nor any condition on the correlation coefficient.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期97-100,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11271161)
关键词 极值理论 高斯序列 强律 extreme value theory Gaussian sequence strong law
  • 相关文献

参考文献1

二级参考文献8

  • 1HARTMAN P,WINTNER P.On the law of the iterated logarithm[J].Am J Math,1941,63:169-176.
  • 2STRASSEN V.A converse to the law of the iterated logarithm[ J].Z Wahrscheinlichkeitstheor Verwandte Geb,1966,4:265-268.
  • 3CHEN Xia.The limit law of the iterated logarithm [ J/OL].J Theoret Probab,2013 [2013-12-10].http://dx,doi.org/10.1007/S 10959-013-0481-4.
  • 4LI Deli,LIANG Hanying.The limit law of the iterated logarithm in Banach space[ J].Statistics and Probability Letters,2013,83:1800-1804.
  • 5HUT C,WEBERN C.On the rate of convergence in the strong law of large number for arrays [ J ].Bull Austral Math Soc,1992,45:279-282.
  • 6LI Deli,RAO M B,TOMKINS R J.A strong law for B-valued arrays[J].Proc Amer Math Soc,1995,123:3205-3212.
  • 7QI Y C.On the strong convergence of arrays[J].Bull Austral Math Soc,1994,50:219-223.
  • 8LI Deli,HUANG Meiling,ROSALSKYA.Strong invariance principles for arrays[ J].Bull Inst Math Acad Sinica,2000,28:167-181.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部