期刊文献+

Effects of melt viscosity on enrichment and separation of primary silicon from Al-Si melt 被引量:4

铝硅熔体黏度对初晶硅富集和分离的影响机制
下载PDF
导出
摘要 The effects of melt viscosity on the enrichment and separation of Si crystals from Al–Si melt during an electromagnetic solidification process were investigated. Both the enrichment efficiency and the separation were found to be strongly dependent on the melt viscosity. A high melt viscosity was beneficial to the enrichment of primary silicon, whereas a low melt viscosity facilitated the separation process. A new enrichment mechanism was proposed in order to clarify the influence of melt viscosity, and an improved process for achieving high-efficiency enrichment of Si crystals via control of the melt viscosity was also proposed. Additionally, the morphology of Si crystals was found to change from spheroidal to plate-like in shape owing to the difference in viscosities in different regions. 研究了铝硅合金电磁分离过程中熔体黏度对初晶硅富集和分离的影响。结果表明,熔体黏度对初晶硅的富集效率和分离有决定性的作用。高黏度熔体有利于初晶硅的富集,反之低黏度熔体可以促进初晶硅的分离。基于此,对初晶硅富集过程的机理进行了新的解释,并通过控制熔体黏度获得了一种强化初晶硅富集效率的工艺。此外,熔体不同区域黏度的差异会导致初晶硅的晶体形貌由球状转变为板片状。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期467-474,共8页 中国有色金属学报(英文版)
基金 Project(u1137601)supported by the National Natural Science Foundation of China Project(106112015CDJXY130007)supported by Fundamental Research Funds for the Central Universities,China
关键词 directional solidification electromagnetic stirring Al-Si melt primary silicon SEPARATION viscosity 定向凝固 电磁搅拌 铝硅熔体 初晶硅 分离 黏度
  • 相关文献

参考文献3

二级参考文献21

  • 1SCHEI A,TUSET J K,TVEIT H. Production of high silicon alloys[M].Trondheim:Tapair Forlag,1998.13-16.
  • 2METELEVA-FISCHER Y V,YANG Y,BOOM R,KRAAIJVELD B KUNTZEL H. Microstructure of metallurgical grade silicon during alloying refining with calcium[J].Intermetallics,2012.9-17.
  • 3LIU D H,MAX D,DU Y Y,LIT J ZHANG G L. Removal of metallic impurities in metallurgical grade silicon by directional solidification[J].Materials Research Innovations,2010.361-364.
  • 4ALEMANYA C,TRASSYB C. Refining of metallurgical-grade silicon by inductive plasma[J].Solar Energy Materials and Solar Cells,2002.41-48.
  • 5KOJI A,EICHIRO O,HITOSHI S,FANG C S HANSEN K C. Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method[J].Journal of Crystal Growth,2007,(01):5-9.
  • 6RANNVEIG K,φYVIND M,BIRGIT R. Growth rate and impurity distribution in multicrystalline silicon for solar cells[J].Materials Science and Engineering A,2005.545-549.
  • 7LIU L J,NAKANO S,KAKIMOTO K. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells[J].Journal of Crystal Growth,2008,(7-9):2192-2197.
  • 8MIKI T,MORITA K,SANO N. Thermodynamics of phosphorus in molten silicon[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1996,(12):937-947.
  • 9NAKAMURA N,BABA H,SAKAGUCHI Y,KATO Y. Boron removal in molten silicon by a steam-added plasma melting method[J].Materials Transactions,2004,(03):858-864.doi:10.2320/matertrans.45.858.
  • 10MORITA K,MIKI T. Thermodynamics of solar-grade-silicon refining[J].Intermetallics,2003,(11-12):1111-1117.doi:10.1016/S0966-9795(03)00148-1.

共引文献14

同被引文献168

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部