期刊文献+

A Spin-orbit Coupling Study on the Quinoline-and Porphyrin-based Photosensitizers

A Spin-orbit Coupling Study on the Quinoline-and Porphyrin-based Photosensitizers
下载PDF
导出
摘要 The spin-orbit coupling(SOC) of four porphyrin- and quinoline-based compounds has been studied using Pauli-Breit SOC operator with one- and two-electron terms. The results revealed that the yield of singlet oxygen is affected by the spin-orbit coupling matrix element involving the emitting triplet and the perturbing singlet state. Investigated quinoline-based compounds have more high SOC values than those porphyrin-based compounds due to spin parallel electron pairs of oxygen. The open shell d8 of metal Pt can induce the stronger exchange interactions than the closed shell p6 of metal Mg, resulting in bigger SOC matrix element in quinoline-based Pt complex than in the quinoline-based Mg complex. Simultaneously, potential energy curves of the first excited sate and the first triplet sate have been calculated, which proves that all investigated complexes can induce singlet oxygen. These computational findings support quinolin-based compounds have high singlet oxygen yields and provide a rigorous basis for predicting the probability of singlet oxygen yields in plane-type molecules. The spin-orbit coupling(SOC) of four porphyrin- and quinoline-based compounds has been studied using Pauli-Breit SOC operator with one- and two-electron terms. The results revealed that the yield of singlet oxygen is affected by the spin-orbit coupling matrix element involving the emitting triplet and the perturbing singlet state. Investigated quinoline-based compounds have more high SOC values than those porphyrin-based compounds due to spin parallel electron pairs of oxygen. The open shell d8 of metal Pt can induce the stronger exchange interactions than the closed shell p6 of metal Mg, resulting in bigger SOC matrix element in quinoline-based Pt complex than in the quinoline-based Mg complex. Simultaneously, potential energy curves of the first excited sate and the first triplet sate have been calculated, which proves that all investigated complexes can induce singlet oxygen. These computational findings support quinolin-based compounds have high singlet oxygen yields and provide a rigorous basis for predicting the probability of singlet oxygen yields in plane-type molecules.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第1期7-12,共6页 结构化学(英文)
基金 supported by the Specialized Research Fund of Xian Yang Normal University(No.14XSYK013) the Natural Science Basic Research Plan in Shaanxi Province(No.2013JM2013)
关键词 photosensitizers density functional theory spin-orbital coupling singlet oxygen photosensitizers density functional theory spin-orbital coupling singlet oxygen
  • 相关文献

参考文献1

二级参考文献12

  • 1Bergman, S. D.; Gut, D.; Kol, M.; Sabatini, C.; Barbieri, A.; Barigelletti, F. Inorg. Chem. 2005, 44, 7943-7950.
  • 2Draper, S.; Gregg, M.; Schofield, D. J.; Browne, E. R; Duati, W. R.; Vos, M.; Passaniti, J. G. J. Am. Chem. Soc. 2004, 126, 8694-8701.
  • 3Kruk, N. N.; Starukhin, A. S.; Knyukshtol, V. N.; Yersin, H. Opt. Spectrosc. 2005, 99, 312-315.
  • 4Siu, P. K. M.; Ma, D. L.; Che, C. M. Chem. Commun. 2005, 1025, 3105-3117.
  • 5Ionkin, A. S.; Marshall, W. J.; Wang, Y. Organometallics 2005, 24, 619-627.
  • 6Cheng, Y. M.; Yeh, Y. S.; Ho, M. L.; Chou, P. T.; Chen, P. S.; Chi, Y. Inorg. Chem. 2005, 44, 4594--4603.
  • 7Katkova, M. A.; Kurskii, Y. A.; Fukin, G K.; Averyushkin, A. S.; Artamonov, A. N.; Vitukhnovsky, A. G; Bochkarev, M. N. Inorg. Chim. Acta 2005, 358, 3625-3632.
  • 8Voronkov, M. G.; Chernov, N. E; Trofimaova, O. M.; Chipanina, N. N.; Shcrstyannikova, L. V.; Turchaninov, V. K. J. Orgnomet. Chem. 2002, 642, 91-96.
  • 9Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, J. T.; Kudin, K. N.; Burant, J. C.; MiUam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G; A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.;Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, 0.; Austin, A. J.; Cammi, R.; Pomeni, C.; Ochterski, J. W.; Ayala, P. Y.; orokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. W.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN03; Revision B. 03; Gaussian; Inc.; Pittsburgh PA 2003.
  • 10Ciofini, I.; Laine, P. P.; Bedioui, F.; Adamo, C. J. J. Am. Chem. Soc. 2004, 126, 10763-10777.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部