期刊文献+

Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and amorphous LaMg_(12)-type alloys prepared by mechanical milling 被引量:1

Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and amorphous LaMg_(12)-type alloys prepared by mechanical milling
原文传递
导出
摘要 Nanocrystalline and amorphous LaMg12-type alloy-Ni composites with a nominal composition of LaMg11Ni+x wt.% Ni(x=100,200)were synthesized via ball milling.The influences of ball milling duration and Ni adding amount xon the gaseous and electrochemical hydrogen storage dynamics of the alloys were systematically studied.Gaseous hydrogen storage performances were studied by a differential scanning calorimeter and a Sievert apparatus.The dehydrogenation activation energy of the alloy hydrides was evaluated by Kissinger method.The electrochemical hydrogen storage dynamics of the alloys was investigated by an automatic galvanostatic system.The H atom diffusion and apparent activation enthalpy of the alloys were calculated.The results demonstrate that a variation in Ni content remarkably enhances the gaseous and electrochemical hydrogen storage dynamics performance of the alloys.The gaseous hydriding rate and high-rate discharge(HRD)ability of the alloys exhibit maximum values with varying milling duration.However,the dehydriding kinetics of the alloys is always accelerated by prolonging milling duration.Specifically,rising milling time from 5to 60 h makes the hydrogen desorption ratio(a ratio of the dehydrogenation amount in 20 min to the saturated hydrogenation amount)increase from 57%to 66%for x=100alloy and from 57%to 70%for x=200.Moreover,the improvement of gaseous hydrogen storage kinetics is attributed to the descending of dehydrogenation activation energy caused by the prolonging of milling duration and growing of Ni content. Nanocrystalline and amorphous LaMg12-type alloy-Ni composites with a nominal composition of LaMg11Ni+x wt.% Ni(x=100,200)were synthesized via ball milling.The influences of ball milling duration and Ni adding amount xon the gaseous and electrochemical hydrogen storage dynamics of the alloys were systematically studied.Gaseous hydrogen storage performances were studied by a differential scanning calorimeter and a Sievert apparatus.The dehydrogenation activation energy of the alloy hydrides was evaluated by Kissinger method.The electrochemical hydrogen storage dynamics of the alloys was investigated by an automatic galvanostatic system.The H atom diffusion and apparent activation enthalpy of the alloys were calculated.The results demonstrate that a variation in Ni content remarkably enhances the gaseous and electrochemical hydrogen storage dynamics performance of the alloys.The gaseous hydriding rate and high-rate discharge(HRD)ability of the alloys exhibit maximum values with varying milling duration.However,the dehydriding kinetics of the alloys is always accelerated by prolonging milling duration.Specifically,rising milling time from 5to 60 h makes the hydrogen desorption ratio(a ratio of the dehydrogenation amount in 20 min to the saturated hydrogenation amount)increase from 57%to 66%for x=100alloy and from 57%to 70%for x=200.Moreover,the improvement of gaseous hydrogen storage kinetics is attributed to the descending of dehydrogenation activation energy caused by the prolonging of milling duration and growing of Ni content.
出处 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第1期50-58,共9页
基金 financially sponsored by National Natural Science Foundation of China (51371094, 51471054) Natural Science Foundation of Inner Mongolia of China (2015MS0558) School of Materials and Metallurgy,Inner Mongolia University of Science and Technology,Project of Young Teachers'Personnel Training Supported(214CY012)
关键词 Mechanical milling Hydrogen storage Electrochemical performance KINETICS Activation energy Mechanical milling Hydrogen storage Electrochemical performance Kinetics Activation energy
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部