期刊文献+

A Study of the Number of Roots of xk =g in a Finite Group via Its Frobenius-Schur Indicators

A Study of the Number of Roots of xk =g in a Finite Group via Its Frobenius-Schur Indicators
原文传递
导出
摘要 Let G be a finite group. For k ∈ N, X ∈ Irr(G), define c(k)x := 1/G ∑g∈G x(gk). This is called the k-th Frobenius-Schur indicator of X. In this article we study the Probenius-Schur indicators for Frobenius groups, p-groups, semidihedral groups and mod- ular p-groups. Further, we use this to study the function ζ kG(g) which counts the number of roots of xk = g in a finite group G. Let G be a finite group. For k ∈ N, X ∈ Irr(G), define c(k)x := 1/G ∑g∈G x(gk). This is called the k-th Frobenius-Schur indicator of X. In this article we study the Probenius-Schur indicators for Frobenius groups, p-groups, semidihedral groups and mod- ular p-groups. Further, we use this to study the function ζ kG(g) which counts the number of roots of xk = g in a finite group G.
出处 《Algebra Colloquium》 SCIE CSCD 2017年第1期93-108,共16页 代数集刊(英文版)
关键词 Frobenius-Schur indicators P-GROUPS group characters Frobenius-Schur indicators, p-groups, group characters
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部