期刊文献+

异类值多目标二人零和约束矩阵对策及求解方法

The Method for Solving Multi-objective Zero-sum and Constrained Matrix Games with Heterogeneous Values
原文传递
导出
摘要 矩阵对策是对策理论的一个重要分支。本文根据多目标决策和模糊对策理论,研究了支付值是异类值情况下的多目标二人零和约束矩阵对策问题。文章基于不同的排序方法将直觉模糊值、三角直觉模糊数和区间直觉模糊数的多目标对策清晰化,然后根据理想点法求解多目标规划问题。通过一个数值实例说明了该方法的有效性和实用性。 Matrix game is an important part of the game theory. In this paper, we have studied the multi-objective zero-sum and constrained matrix games with payoffs of heterogeneous values based on multi-objective decision and fuzzy game theory.Based on the ranking order relation of IF-values, IFNs and interval-IFNs, respectively, we change the multi-objective game clear, then according to the ideal point method for solving the multi-objective programming problems. A numerical example is given to illustrate the validity and practicability of the method.
出处 《模糊系统与数学》 CSCD 北大核心 2016年第4期121-128,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金重点资助项目(71231003) 国家自然科学基金资助项目(71461005 71561008) 广西自然科学基金资助项目(2014GXNSFAA118010)
关键词 异类值 多目标对策 约束矩阵对策 理想点法 Heterogeneous Values Multi-objective Games Constrained Matrix Games Ideal Point Method
  • 相关文献

参考文献3

二级参考文献25

  • 1Gau W L, Buehrer D J. Vague sets [J]. IEEE Trans Syst Man Cybern, 1993, 23(2): 610-614.
  • 2Zadeh L A. Fuzzy sets [J]. Inform and Control, 1965, 8: 338-356.
  • 3Atanassov K. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 4Chen S M, Tan J M. Handling multi-criteria fuzzy decision-making problems based on vague set theory [J]. Fuzzy Sets and Systems, 1994, 67(2): 163-172.
  • 5Hong D H, Choi C H. Multi-criteria fuzzy decision-making problems based on vague set theory[J]. Fuzzy Sets and Systems, 2000, 114: 103-113.
  • 6Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2000, 114: 505-518.
  • 7Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 79:403-405.
  • 8Hung W L,Wu J W.Correlation of intuitionistic fuzzy sets by centroid method[J].Information Sciences,2002,144(1-4):219-225.
  • 9Mondal T K,Samanta S K.Topology of interval-valued intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,2001,119(3):483-494.
  • 10Deschrijver G,Kerre E E.On the relationship between some extensions of fuzzy set theory[J].Fuzzy Sets and Systems,2003,133(2):227-235.

共引文献337

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部