摘要
矩阵对策是对策理论的一个重要分支。本文根据多目标决策和模糊对策理论,研究了支付值是异类值情况下的多目标二人零和约束矩阵对策问题。文章基于不同的排序方法将直觉模糊值、三角直觉模糊数和区间直觉模糊数的多目标对策清晰化,然后根据理想点法求解多目标规划问题。通过一个数值实例说明了该方法的有效性和实用性。
Matrix game is an important part of the game theory. In this paper, we have studied the multi-objective zero-sum and constrained matrix games with payoffs of heterogeneous values based on multi-objective decision and fuzzy game theory.Based on the ranking order relation of IF-values, IFNs and interval-IFNs, respectively, we change the multi-objective game clear, then according to the ideal point method for solving the multi-objective programming problems. A numerical example is given to illustrate the validity and practicability of the method.
出处
《模糊系统与数学》
CSCD
北大核心
2016年第4期121-128,共8页
Fuzzy Systems and Mathematics
基金
国家自然科学基金重点资助项目(71231003)
国家自然科学基金资助项目(71461005
71561008)
广西自然科学基金资助项目(2014GXNSFAA118010)
关键词
异类值
多目标对策
约束矩阵对策
理想点法
Heterogeneous Values
Multi-objective Games
Constrained Matrix Games
Ideal Point Method