期刊文献+

量化转换系统的格值语言包含关系

Lattice-valued Language Containment Relation for Quantitative Transition Systems
原文传递
导出
摘要 近十年来,量化形式化验证方法的研究取得了很多的研究成果。量化转换系统是一种新型的量化模型,该模型的主要特点是其动作集合上被赋予一个基于完备剩余格的格值等价关系。在量化转换系统的模型上,本文提出了一种格值语言包含关系去度量系统的一个状态所接受的语言能在多大程度上被另一个状态所接受的语言所包含,研究了这种关系的计算复杂性问题,并用格值版本的HennessyMilner逻辑的子逻辑提供了它的逻辑刻画。所有这些性质表明所提出的格值语言包含关系为并发和分布式系统的量化验证提供了重要的理论基础。 During the past years, substantial progress has been made towards developing quantitative formal verification methods. In this paper,we present a lattice-valued relation between the states of a quantitative transition system whose actions are equipped with a complete residuated lattice--valued equality relation, called lattice-valued language containment relation, to measure to what extent the language of one state is included by that of the other. Then we provide an algorithm for computing the lattice-valued language containment relation over quantitative transition system,and establish a logical characterization of lattice-valued language containment relation in terms of lattice-valued version of a fragment of Hennessy-Milner logic. These properties suggest that our language containment relation provides an appropriate basis for a quantitative theory of concurrent and distributed systems.
出处 《模糊系统与数学》 CSCD 北大核心 2016年第5期50-59,共10页 Fuzzy Systems and Mathematics
基金 国家自然科学基金(11301321 11401361 61672023 61673352) 中国博士后科学基金资助项目(2014M552408) 安徽省自然科学基金(2013SQRL034ZD TSKJ2016B02)
关键词 标号转换系统 形式化验证 Hennessy-Milner逻辑 模糊自动机 完备剩余格 labelled transition system formal verification Hennessy-Milner logic fuzzy automata complete residuated lattices
  • 相关文献

参考文献4

二级参考文献40

  • 1李洪兴.从模糊控制的数学本质看模糊逻辑的成功──关于“关于模糊逻辑似是而非的争论”的似是而非的介入[J].模糊系统与数学,1995,9(4):1-14. 被引量:145
  • 2[1]Rosser, J. B. , Turquette, A. R. , Many-Valued Logics, Amsterdam: North-Holland, 1952.
  • 3[2]Ying, M. S. , A new approach for fuzzy topology (Ⅰ) (Ⅱ) (Ⅲ), Fuzzy Sets and Systems, 1991, 39(3): 303-321; 1992,47(2): 221 232; 1993, 55(2): 193-207.
  • 4[3]Ying, M. S., Fuzzifying topology based on complete residuated lattice-valued logic (Ⅰ), Fuzzy Sets and Systems, 1993, 56(3): 337-373.
  • 5[4]Pavelka, J., On fuzzy logic Ⅰ, Ⅱ, Ⅲ, Zeitschr f math Logik und Grundlagen d Math, 1979, 25: 45-52; 119-134;447-464.
  • 6[5]Wang, G. J. , Non-classical Mathematical Logics and Approximate Reasoning (in Chinese), Beijing: Science Press, 2000,207-274.
  • 7[6]Ying, M. S., Automata theory based on quantum logic. (Ⅰ), Int. J. Theor. Phys., 2000, 39(4): 981-991.
  • 8[7]Ying, M. S. , Automata theory based on quantum logic. (Ⅱ), Int. J. Theor. Phys. , 2000, 39(11 ): 2545-2557.
  • 9[8]Wee, W. G., On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D. Thesis, Purdue University, 1967.
  • 10[9]Kandel, A., Lee, S. C., Fuzzy Switching and Automata: Theory and Applications, London: Grane Russak, 1980, 171-262.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部