期刊文献+

不确定型多值Kripke结构的模型检测 被引量:1

Model checking for nondeterministic multi-valued Kripke structures
原文传递
导出
摘要 多值模型检测是经典模型检测的一种扩展,主要用于具有不一致信息的系统的验证。为了对具有不一致和不确定性的系统进行形式化分析,本文提出非确定型多值Kripke结构作为此类系统的模型,引入一种多值计算树逻辑作为非确定型多值Kripke结构的规范语言,给出一种多项式时间的模型检测算法。研究结果表明本文提出的模型检测技术适用于具有不确定行为的多值系统的自动验证。 Multi-valued model checking is an extension of the classical model checking to verify the properties of systems with uncertain information. To verify the properties of systems with both uncertain information and nondeterministic behavior, we introduce nondeterministic multi-valued Kripke structures(NMKSs)to allow nondeterministic choices among the possibilities of transitions. To formulate the properties of NMKSs,we present the syntax and semantics of multi-valued computation tree logic(MCTL). We give a model checking algorithm for MCTL over NMKSs,and show that the algorithm has polynomial-time complexity in the size of the system. The techniques developed here are applicable to the automatic verification of multi-valued systems with nondeterministic behaviours.
出处 《模糊系统与数学》 CSCD 北大核心 2016年第5期60-70,共11页 Fuzzy Systems and Mathematics
基金 国家自然科学基金(11301321 11401361) 中国博士后科学基金资助项目(2014M552408)
关键词 多值模型检验 计算树逻辑 模糊自动机 DE MORGAN代数 multi-valued model checking computation tree logic fuzzy automata De Morgan algebra
  • 相关文献

参考文献1

二级参考文献20

  • 1Clarke E M,Grumberg 0, Peled D. Model checking[M]. Cambridge,MA:MIT Press, 1999.
  • 2Baier C, et al. Principles of model checking[M]. The MIT Press,2008.
  • 3Milner R. Communicating and mobile systems: The 7r-calculus[M]. Cambridge University Press, 1999.
  • 4De Nicola R,Vaandrager F W. Three logics for branching bisimulation [J]. Journal of the ACM,1995,42(2) :458 -487.
  • 5Cernd P, Henzinger T A, Radhakrishna A. Simulation distances[J]. Theoretical Computer Science,2012,413:21 -35.
  • 6Zadeh L A. Fuzzy subsets[J]. Information and Control,1965,8:338-353.
  • 7Goguen J A. L-.uzzy sets[J]. J. Math. Anal. Appl.,1967,18:145-174.
  • 8Hajek P. Metamathematics of fuzzy logic[M]. Dordrecht :Kluwer Academic Publishers, 1998.
  • 9Blohlevek R. Fuzzy relational systems: Foundations and principles[M]. New York:Kluwer*2002.
  • 10Hennessy M . Milner R. Algebraic laws for nondeterminism and concurrency [J]. Journal of ACM,1985,32(1) :137-161.

共引文献3

同被引文献3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部