期刊文献+

miR-205通过下调ZEB1和ZEB2表达抑制肾小管上皮细胞转分化 被引量:6

The MicroRNA miR-205 inhibits epithelial-messenchymal transition in HK-2 cells by downregulating ZEB1 and ZEB2 expressions
下载PDF
导出
摘要 目的探讨miR-205在肾小管上皮细胞转分化的作用机制。方法将miR-205 mimics和scrambled control分别转染HK-2转分化细胞株,采用real-time q PCR检测miR-205和ZEB1、E-cadherin、α-SMA mRNA的表达水平;运用Western blotting检测ZEB1、ZEB2、E-cadherin、α-SMA的表达水平。通过细胞免疫组化检测β-catenin的异位表达情况和E-cadherin的表达情况。结果miR-205 mimics转染HK-2转分化细胞株后,ZEB1和ZEB2的表达水平较高糖组得到大幅下调(P<0.01),而E-cadherin的表达水平较高糖组显著提高(P<0.01),同时间质细胞特征分子α-SMA的表达水平显著降低(P<0.01)。miR-205 mimics也显著抑制了HK-2转分化过程中β-catenin异位表达,在维持上皮细胞的形态方面也起着重要的作用。结论 miR-205可通过下调ZEB1和ZEB2的表达,抑制了肾小管上皮间质转分化进程。 Objective To explore the role of miR-205 in regulating epithelial-messenchymal transition(EMT) in proximal tubular cell line HK-2 cells and the underlying mechanism. Methods HK-2 cells transfected with miR-205 mimics or a scrambled control sequence were examined for miR-205 expressions and mRNA levels of ZEB1, E-cadherin, and α-SMA using real-time q PCR; the protein levels of ZEB1, ZEB2, E-cadherin, and α-SMA were detected with Western blotting. Immunohistochemistry was performed to examine the ectopic expression of β-catenin and E-cadherin expression in the cells. Results The expression levels of ZEB1 and ZEB2 decreased significantly(P〈0.01) while E-cadherin expression was up-regulated(P〈0.01) in cells transfected with miR-205 mimics. Transfection with miR-205 mimics also markedly down-regulated the expression of α-SMA(P〈0.01), a marker of mesenchymal cells that play an important role in EMT of HK-2 cells. The ectopic expression of β-catenin was inhibited by miR-205 mimics in HK-2 cells. Conclusion miR-205 inhibits EMT in HK-2 cells by down-regulating the expression levels of ZEB1 and ZEB2.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2016年第12期1700-1705,1711,共7页 Journal of Southern Medical University
基金 福建省自然科学基金(2012J01435) 福建医科大学科技发展专项基金(FZS13022Y) 福建省卫计委青年科研课题(2013-1-50)
关键词 miR-205 转分化 HK-2细胞株 ZEB1 miR-205 epithelial-messenchymal transition HK-2 cells ZEB1
  • 相关文献

参考文献2

二级参考文献37

  • 1Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. Int J Exp Pathol 2011; 92(3): 143-50.
  • 2Papageorgis E Lambert AW, Ozturk S, Gao E Pan H, Manne U, et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 2010; 70(3): 968-78.
  • 3Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 2010; 16(8): 349-60.
  • 4Huang K, Zhang JX, Hart L, You YP, Jiang T, Pu PY, et al. Mi- croRNA roles in beta-catenin pathway. Mol Cancer 2010; 9: 252.
  • 5Beltramo E, Berrone E, Tarallo S, Porta M. Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine. Diabetes Metab Res Rev 2009; 25(6): 566-76.
  • 6Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med 2009; I 1: el3.
  • 7Strutz F, Muller GA. Transdifferentiation comes of age. Nephrol Dial Transplant 2000; 15( I 1 ): 1729-31.
  • 8Tian YC, Fraser D, Attisano L, Phillips AO. TGF-betal-mediated alterations of renal proximal tubular epithelial cell phenotype. Am J Physiol Renal Physiol 2003; 285( I ): F 130-42.
  • 9Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6(5): 392-401.
  • 10Pulkkinen K, Murugan S, Vainio S. Wnt signaling in kidney de- velopment and disease. Organogenesis 2008; 4(2): 55-9.

共引文献14

同被引文献33

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部