期刊文献+

Frequency synthesis of forced opto-electronic oscillators at the X-band

Frequency synthesis of forced opto-electronic oscillators at the X-band
原文传递
导出
摘要 Ultra-low phase noise performance is required for frequency agile local oscillators, which are the core for high resolution imagers, spectrum analyzers, and high speed data communications. A forced opto-electronic oscillator (OEO) benefits from frequency stabilization techniques for realizing a clean and low phase noise source at micro- wave and millimeter wave frequencies. Forced oscillation techniques of self-injection locking and self-phase lock loop are combined to provide an ultra-low oscillator phase noise both close-in and far-away from the carrier frequency, while a tunable yttrium iron garnet microwave filter combined with a wavelength tuned transversal filter are employed to implement both coarse and fine frequency tuning for a tunable X-band OEO. A phase noise of -137 dBc/Hz at an offset frequency of 10 kHz is achieved covering the frequencies of 9 to 11 GHz with a fine frequency tuning resolution of 44 Hz/pm and coarse tuning of 25 MHz/mA. Moreover, the long term stability of the output signal is tested, and a maximum frequency drift of 2 kHz is measured within 60 min for the X-band synthesizer. Ultra-low phase noise performance is required for frequency agile local oscillators, which are the core for high resolution imagers, spectrum analyzers, and high speed data communications. A forced opto-electronic oscillator (OEO) benefits from frequency stabilization techniques for realizing a clean and low phase noise source at micro- wave and millimeter wave frequencies. Forced oscillation techniques of self-injection locking and self-phase lock loop are combined to provide an ultra-low oscillator phase noise both close-in and far-away from the carrier frequency, while a tunable yttrium iron garnet microwave filter combined with a wavelength tuned transversal filter are employed to implement both coarse and fine frequency tuning for a tunable X-band OEO. A phase noise of -137 dBc/Hz at an offset frequency of 10 kHz is achieved covering the frequencies of 9 to 11 GHz with a fine frequency tuning resolution of 44 Hz/pm and coarse tuning of 25 MHz/mA. Moreover, the long term stability of the output signal is tested, and a maximum frequency drift of 2 kHz is measured within 60 min for the X-band synthesizer.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第1期40-44,共5页 中国光学快报(英文版)
关键词 Fiber optics links and subsystems Radio frequency photonics Oscillators Fiber optics links and subsystems Radio frequency photonics Oscillators
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部