期刊文献+

应用档案精英学习和反向学习的多目标进化算法 被引量:22

Multi-Objective Evolutionary Algorithm Based on Archive-Elite Learning and Opposition-Based Learning
下载PDF
导出
摘要 现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning and Opposition-based Learning,AOL-MOEA)以解决困难的多目标优化问题.AOLMOEA算法利用档案精英学习算子增强算法全局搜索能力,促进算法较快收敛;运用动态一般反向学习机制代替变异算子以增加种群逃逸局部极值的机会;使用3-点最短路径方法维持解群的多样性.AOL-MOEA算法与另外5种代表性多目标优化算法在12个基准多目标测试函数上进行性能比较,实验结果表明:AOL-MOEA算法在收敛性、多样性和稳定性等方面均优于或部分优于其他的对比算法. It is a huge challenge for multi-objective optimization algorithms due to the increasing complexity of the multi-objective optimization problems(MOPs for short)in the real world.Inspired by the idea of hybrid components of multi-objective optimization algorithms,a new multi-objective evolutionary algorithm based on archive-elite learning and opposition-based learning(AOL-MOEA for short)was proposed to tackle some complicated MOPs in the paper.The proposed AOL-MOEA used the strategy of archive-elite learning to enhance the ability of global search so as to promote the convergence of the algorithm.Secondly,a dynamic generalized opposition-based learning approach was utilized to replace the traditional mutation operator to increase the probability of escaping from local optima for the optimizer.Thirdly,a novel diversity preserved mechanism of three-point shortest path was proposed to conquer some intrinsic defects of the popular diversity preserved strategies,and maintenance the diversity of the population effectively.The AOL-MOEA was compared with other five typical multi-objective optimization algorithms on a benchmark test set including 12 multi-objective optimization functions.Experimental results demonstrate that the proposed algorithm outperforms or partially outperforms the other peer algorithms on convergence,diversity and stability.
出处 《计算机学报》 EI CSCD 北大核心 2017年第3期757-772,共16页 Chinese Journal of Computers
基金 国家自然科学基金(61165004) 江西省自然科学基金(20114BAB201025) 江西省教育厅科技项目(GJJ12307 GJJ14373)资助
关键词 档案精英学习 动态一般反向学习 3-点最短路径 多目标进化算法 archive-elite learning dynamic generalized opposition-based learning three-point shortest path multi-objective evolutionary algorithm
  • 相关文献

参考文献4

二级参考文献41

  • 1曾三友,李晖,丁立新,姚书振,许中华.基于排序的非劣集合快速求解算法[J].计算机研究与发展,2004,41(9):1565-1571. 被引量:8
  • 2雷德明,吴智铭.Pareto档案多目标粒子群优化[J].模式识别与人工智能,2006,19(4):475-480. 被引量:25
  • 3Eckart Zitzler, Lothar Thiele. Multiobjective evolutionary algorithrns: a comparative case study and the strength Pareto approach[ J ]. IEEE Transactions on Evolutionary Computation, 1999,3(4) :257 - 270.
  • 4Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization [ A ]. K C Giannakoglou et al. EURO- GEN 2001-Evolutionary Methods for Design, Optimisation and Control with Appfications to Industrial Problems[ C ]. Athens: National Technical University of Athens,2002. 95- 100.
  • 5Deb Kalyanmoy, Amrit Pratap, Sameer Agrawal and T. Meyrivan. A fast and elitist multi-objective genetic algorithm: NSGA- Ⅱ [ J ]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 - 197.
  • 6M Farina and P Amato. A fuzzy definition of "optimality" for many-criteria optimization problems [ J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2004,34(3) :315 - 326.
  • 7Knowles J D, Come D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000,8 (2) : 149 - 172.
  • 8Carlos A Coello Coello, Maximino Salazar Lechuga. Handling multiple objectives with particle swarm optimization[ J ]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 256 - 279.
  • 9Come D W, Jerram,N R, Knowles, J D et al. PESA-Ⅱ :region- based selection in evolutionary mulfiobjective optimization[ A]. Lee Spector. Proceedings of the Genetic and Evolutionary Computation Conference( GECCO 2001 ) [ C]. San Francisco: Morgan Kaufmann Publishers, 2001.283 - 290.
  • 10H Lu, G G Yen. Dynamic population size in multiobjective evolutionary algorithms[ A ]. Proceedings of Congress on Evolutionary Computation(CEC' 2002 ) [ C ]. Piscataway: IEEE Service Center,2002. 1648 - 1653.

共引文献245

同被引文献118

引证文献22

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部