期刊文献+

A THREE-PARAMETER FAULT-DETECTION SOFTWARE RELIABILITY MODEL WITH THE UNCERTAINTY OF OPERATING ENVIRONMENTS 被引量:4

A THREE-PARAMETER FAULT-DETECTION SOFTWARE RELIABILITY MODEL WITH THE UNCERTAINTY OF OPERATING ENVIRONMENTS
原文传递
导出
摘要 As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high quality services to customers. However, because of the complexity of software systems, soft-ware development can be time-consuming and expensive. Many statistical models have been developed in the past years to estimate soflnvare reliability. In this paper, we propose a new three-parameter fault-detection software reliability model with the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models based on three sets of failure data collected from software applications. The results show that the proposed model fits significantly better than other existing NHPP models based on three criteria such as mean squared error (MSE), predictive ratio risk (PRR), and predictive power (PP). As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high quality services to customers. However, because of the complexity of software systems, soft-ware development can be time-consuming and expensive. Many statistical models have been developed in the past years to estimate soflnvare reliability. In this paper, we propose a new three-parameter fault-detection software reliability model with the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models based on three sets of failure data collected from software applications. The results show that the proposed model fits significantly better than other existing NHPP models based on three criteria such as mean squared error (MSE), predictive ratio risk (PRR), and predictive power (PP).
出处 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2017年第1期121-132,共12页 系统科学与系统工程学报(英文版)
关键词 Nonhomogeneous Poisson process ratio risk predictive power fault detection software reliability mean squared error PREDICTIVE Nonhomogeneous Poisson process, ratio risk, predictive power, fault detection software reliability, mean squared error, predictive
  • 相关文献

同被引文献17

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部