期刊文献+

面向LBSN的k-medoids聚类算法 被引量:1

Ak-medoids based clustering algorithm in location based social networks
下载PDF
导出
摘要 常用的聚类算法存在诸多不足,为此提出了一种基于初始半径r的k-medoids改进算法,主要针对LBSN中的位置数据进行聚类,改善初始聚类中心敏感对聚类结果的影响,其本质是基于密度聚类,不同之处在于k值的选取是依赖于半径r.通过大量真实签到数据集进行实验,结果显示本文算法聚类结果更稳定.本文算法在基于位置的社交网络应用中获得更好的聚类效果和更快的收敛速度.实验中将距离平方和作为准则函数进行对比,相对于传统k-medoids算法优势明显,对退化的k-medoids算法也能够缩小1.2%到2%. The commonly-used clustering algorithms have several drawbacks. Aiming to solve the above problems, an improved k-medoids algorithm was proposed based on the initial radius r, which is used for clustering using location data. The algorithm is actually a density-based clustering approach. The difference is that the k value depends on the radius r. Extensive experiments are conducted on real check-in data, and the results show that the improved k-mediods algorithm on the radius r is more stable. In addition, by comparing the sum of the square of distance between objects in the same cluster among different algorithms, the proposed algorithm can obtain better clustering results and convergence speed when applied to location based social networks. Compared to the traditional k medoids algorithm, the cost has obviously reduced, as for and the degraded k-medoids algorithm, the cost can be reduced among 1.20% and 2%.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第1期70-79,共10页 JUSTC
基金 国家自然科学基金(61100045 61165013 61363037) 教育部人文社会科学研究规划基金(15YJAZH058) 教育部人文社会科学研究青年基金(14YJCZH046) 四川省教育厅资助科研项目(14ZB0458) 成都市软科学项目(2015-RK00-00059-ZF) 科学计算与智能信息处理广西高校重点实验室开放课题(GXSCIIP201407)资助
关键词 社交网络 密度聚类 k-medoids 签到数据 距离相似度 social networks density-based clustering k-medoids check-in data distance similarity
  • 相关文献

参考文献5

二级参考文献65

  • 1苏守宝,刘仁金.基于佳点集遗传算法的聚类技术[J].计算机应用,2005,25(3):643-645. 被引量:7
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 3MacQueen J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.
  • 4Wang Wei.Yang Jiong,Muntz R.STING:a statistical information grid approach to spatial data mining[C]//Proc of the 23rd International Conference on Very Large Data Bases,1997.
  • 5Pakhiraa M K,Bandyopadhyayb S I,JjwalMaulikc U.Validity index for crisp and fuzzy clusters[J].Pattern Rccognition,2004,37:487-501.
  • 6Agrawal R,Gehrke J,Gunopulcs D.Automatic subspaee clustering of high dimensional data for data mining application[C]//Proc of ACM SIGMOD Intconfon Management on Data,Seattle,WA,1998:94-205.
  • 7Bandyopadhyay S I,JjwalMaulik U.An evolutionary technique based on K-means algorithm for optimal clustering in RN[J].Information Sciences, 2002,146 : 221-237.
  • 8Guha S,Rastogi R,Shim K.Cure:an efficient clustering algorithm for large database[C]//Proc of ACM-SIGMOND Int Conf Management on Data,Seattle,Washington,1998:73-84.
  • 9Hall L O, Ozyurt I B,Bezdek J C.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation, 1999,3(2) : 103-112.
  • 10Li J,Gao X B,Ji H B.A feature weighted FCM clustering algorithm based on evolutionary strategy[C]//Proeeedings of the 4th World Congress on Intelligent Control and Automation,Shanghai, China, 2003 : 1540-1553.

共引文献84

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部