期刊文献+

基于偏好不一致熵的有序决策 被引量:1

Ordered decision-making based on preference inconsistence-based entropy
下载PDF
导出
摘要 针对多规则有序决策系统中的偏好决策问题,根据有序决策的偏好不一致特性,提出了一种基于偏好不一致熵的偏好决策方法。首先,定义了样本的偏好不一致熵(PIEO),用来度量特定样本相对于样本集的偏好不一致程度;然后,根据偏好决策中不同属性对决策的重要性不同的特点,提出了一种加权的样本偏好不一致熵,并结合属性偏好不一致熵在度量属性重要性方面的能力,给出了一种基于属性偏好不一致熵的权值的计算方法;最后,提出了一种基于样本偏好不一致熵的偏好决策算法。采用Pasture Production和Squalsh两个数据集进行仿真实验,基于全局偏好不一致熵分类后,各属性的偏好不一致熵普遍比基于向上和向下偏好不一致熵分类后的熵值小,而且更接近原始决策的偏好不一致熵,这说明基于全局偏好不一致熵的分类比其他两种情况的分类效果好。分类偏离度最小低至0.128 2,这说明分类的结果比较接近原始决策。 Aiming at the problem of preference decision in muhi-rule ordered decision-making system, according to the preference inconsistency of ordered decision-making, a preference decision-making method based on preference inconsistent entropy was proposed. Firstly, the Preference Inconsistence Entropy of Object (PIEO) was defined and used to measure the degree of preference inconsistency for a particular sample relative to the sample set. Then, according to that different attributes have different importances to the preference decision, a weighted Preference Inconsistence-based Entropy of Object (wPIEO) was proposed. Moreover, combining wPIEO with attribute preference inconsistency entropy in measuring attribute importance, a weighting method based on attribute preference inconsistent entropy was proposed. Finally, a preference decision algorithm based on sample preference inconsistent entropy was proposed. Two data sets, Pasture Production and Squalsh, were used to simulate the experiment. After the global Preference Inconsistent Entropy (gPIE) classification, the preference inconsistent entropy of each attribute was generally smaller than the entropy value based on the preference inconsistent entropy classification based on the up and down preferences, and it was closer to the preference inconsistent entropy of the original decision, which indicates that the classification based on gPIE was better than the other two cases. The classification deviation was as low as 0.128 2, indicating that the classification results are close to the original decision.
作者 潘伟 佘堃
出处 《计算机应用》 CSCD 北大核心 2017年第3期796-800,共5页 journal of Computer Applications
基金 四川省教育厅自然科学基金重点资助项目(12ZA178) 四川省重大项目支撑计划项目(2015GZ0102) 四川省可视计算和虚拟现实重点实验室建设基金资助项目(KJ201406)~~
关键词 有序决策 偏好不一致熵 分类 偏好关系 ordered decision-making preference inconsistence-based entropy classification preference relation
  • 相关文献

参考文献3

二级参考文献14

  • 1徐泽水.残缺互补判断矩阵[J].系统工程理论与实践,2004,24(6):93-97. 被引量:29
  • 2徐泽水.基于残缺互补判断矩阵的交互式群决策方法[J].控制与决策,2005,20(8):913-916. 被引量:28
  • 3王熙照,杨晨晓.分支合并对决策树归纳学习的影响[J].计算机学报,2007,30(8):1251-1258. 被引量:17
  • 4Saaty T L. The Analytic Hierarchy Process[M]. New York: McGraw-Hill, 1980.
  • 5Chiclana F, Herrera F,Three Representation Herrera-Viedma E. Integrating Models in Fuzzy Multipurpose Decision Making Based on Fuzzy Preference Relations[J]. Fuzzy Sets and Systems, 1998, 97(1): 33-48.
  • 6Fan Z P, Ma J, Zhang Q. An Approach to Multiple Attribute Decision Making Based on Fuzzy Preference Information on Alternatives [J]. Fuzzy Sets and Systems, 2002, 131(1): 101-106.
  • 7Xu Z S. Goal Programming Models for Obtaining the Priority Vector of Incomplete Fuzzy Preference Relation[J]. Int J of Approximate Reasoning, 2004, 36(3):261-270.
  • 8Yager R R. OWA Aggregation Over a Continuous Interval Argument with Applications to Decision Making [J]. IEEE Trans on Systems, Man, and Cybernetics-Part B, 2004, 34(5):1952-1963.
  • 9Liou T S, Wang M J. Ranking Fuzzy Numbers with Integral Value[J]. Fuzzy Sets and Systems, 1992, 50:247-255.
  • 10LIANG JiYe & QIAN YuHua Key Laboratory of Computational Intelligence and Chinese Information Processing,Ministry of Education,School of Computer & Information Technology,Shanxi University,Taiyuan 030006,China.Information granules and entropy theory in information systems[J].Science in China(Series F),2008,51(10):1427-1444. 被引量:41

共引文献66

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部