期刊文献+

采用自适应四点窗中点滤波的高椒盐噪声滤除方法 被引量:6

Adaptive four-dot midpoint filter for removing high density salt-and-pepper noise in images
下载PDF
导出
摘要 针对当前中值滤波器处理图像高椒盐噪声效果不佳和实时性不强等问题,提出了一种快速自适应四点窗中点滤波(AFMF)方法。首先,为了降低计算复杂度,使用简单的极值方法检测噪声点;然后,摒弃传统的全点窗口,不用中值滤波,而是在开关滤波和裁剪滤波的基础上,采用新型的非线性滤波方法:中点滤波,简化了算法的流程,提升了算法的计算效率,提高了去噪效果;最后,从3×3窗口开始到由里向外推进,逐渐增大窗口,形成自适应滤波,一直到噪声点处理完,如此避免了窗口大小参数的设置。实验结果表明,与AMF、SAMF、MDBUTMF以及DBCWMF相比,AFMF在处理高密度椒盐噪声上不仅有更好的去噪性能、更快的运行速度(约0.18 s),且无需设置参数,可操作性强,具有较强的实用性。 In view of poor denoising performance and unideal speed of the current median filter, a fast and Adaptive Four-dot Midpoint Filter (AFMF) was proposed. Firstly, noise pixels and non-noise pixels of an image were identified using a simple extreme method to reduce the computational complexity. Then, the traditional full-point window was discarded, instead of median filtering, but on the basis of switch filtering and clipping filtering, a new nonlinear filtering method named midpoint filtering was adopted to simplify the algorithm flow, improve the calculation efficiency, improve the denoising effect. Finally, starting from a 3×3 window from inside to outside, the window was gradually enlarged to form adaptive filtering, until all the noise pixels were processed, the setting of window size parameters was avoided. The experimental results show that compared with AMF, SAMF, MDBUTMF and DBCWMF, AFMF not only has better denoising performance but also faster operation speed (about 0.18 s), but also does not need to set parameters, which is easy to operate and has strong practicability.
出处 《计算机应用》 CSCD 北大核心 2017年第3期832-838,共7页 journal of Computer Applications
基金 河南省重点科技攻关项目(132102110209) 河南省基础与前沿技术研究计划项目(142300410295)~~
关键词 图像恢复 图像去噪 开关中值滤波 自适应滤波 中点滤波 四点模板 椒盐噪声 image restoration image denoising switching median filtering adaptive filtering midpoint filtering fourdot mask salt-and-pepper noise
  • 相关文献

参考文献6

二级参考文献50

  • 1刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 2宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007,33(5):474-479. 被引量:42
  • 3DRK Bmwnrigg.The weighted median filter[J]. Commun Ass Comput Mach, 1984,27(8) :807 - 818.
  • 4Z Wang,D Zhang.Progressive switching median filter for the removal of impulse noise from highly corrupted images [ J ]. IEEE Trans Circuits Sys, 1999,46( 1 ) : 78 - 80.
  • 5T Sun, Y Neuvo. Detail-preserving median based filters in image processing [J].Pattern Recognit Lett, 1994, 15 (4) : 341 - 347.
  • 6E Abreu,M Lightstone, S KMitra, K Arakawa. A new efficient approach for the removal of impulse noise from highly corrupt- ed images [ J ]. IEEE Trarts Image Processing, 1996, 15 ( 6 ) : 1012- 1025.
  • 7R H Chart, C-W Ho, M Nikolova. Salt and pepper noise re- moval by median type noise detectors and detail preserving reg- ularization[J]. IEEE Trans Image Processing, 2005, 14(10) : 1479- 1485.
  • 8K S Srinivasan, D Ebenezer. A new fast and efficient decision- based algorithm for removal of high-density impulse noise[ J]. IEEE Signal Processing Letters,2007,14(3):189- 192.
  • 9Kenny KVT,Nor A M Isa. Noise adaptive fuzzy switching median filter for salt and pepper noise reduction[J]. IEEE. Signal Processing Letters,2010,17(3) :281 - 284.
  • 10ASTOLA J, KOUSMANE P.Fundamentals of nonlinear digital filtering[M].CRC Press, 1997.

共引文献82

同被引文献28

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部