期刊文献+

基于随机蕨丛的3D-SLAM重定位方法 被引量:1

A 3D-SLAM relocalization method based on randomized ferns
下载PDF
导出
摘要 针对3D-SLAM系统在未知环境中建图可能会出现的匹配失败而导致定位丢失的问题,提出了一种基于随机蕨丛的视觉里程计实时重定位方法。利用视觉里程计算法获取关键帧和关键帧对应的位置姿态;利用随机蕨丛算法对关键帧图像编码,并存储编码结果;通过定义随机蕨丛编码结果之间的差异,增量存储关键帧;当视觉里程计模块判断当前定位丢失时,比对当前帧与之前关键帧的编码结果,寻找最相近的关键帧进行重定位。采用TUM数据集对算法进行测试,在时间消耗仅增加20%的情况下,实现在3D-SLAM过程中定位丢失时的重定位,提升建图成功率。 To deal with the match failure and further relocation failure during the 3D-SLAM system working under unknown environments, a real-time relocation method is proposed based on visual odometry using randomized ferns. Firstly,the method obtains the keyframes and their corresponding poses by visual odometry. The keyframes are encoded by randomized ferns. The encoding results and the keyframes are saved. Then the keyframes are filtered through defining the differences among the encoding results of each keyframes. The qualified keyframes are used in the randomized ferns training. Finally,when the visual odometry detects the failure of localization,the encoding result of currency frame and the qualified keyframes filtered before are compared to one another to be relocalized by finding the best match. Based on the TUM dataset, the experiment result shows that the 3D-SLAM system can successfully relocate when localization fails. It significantly raises the mapping success rate with only20% time consumption increased.
出处 《北京信息科技大学学报(自然科学版)》 2017年第1期86-91,共6页 Journal of Beijing Information Science and Technology University
关键词 3D-SLAM 视觉里程计 重定位 随机蕨丛 3D-SLAM visual odometey relocation randomized ferns
  • 相关文献

参考文献4

二级参考文献79

  • 1Grunert J A.Das Pothenotische Problem in erweiterter Gestalt nebst Bber seine Anwendungen in der Geodasie.Grunerts Archiv für Mathematik und Physik,Band 1,1981,238-248.
  • 2Fischler M A,Bolles R C.Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.Graphics and Image Processing,1981,24 (6):381-395.
  • 3Haralick R M,Lee C,Ottenberg K,Nolle M.Analysis and Solutions of the Three Point Perspective Pose Estimation Problem.Proc.IEEE Conf.Computer Vision and Pattern Recognition,Maui,Hawaii,1991,592-598.
  • 4Wolfe W J,Mathis D,Sklair C W,Magee M.The Perspective View of Three Points.IEEE Trans.Pattern Anal.Machine Intell.,1991,13(1):66-73.
  • 5Quan Long,Lan Zhongdan.Linear N-Point Camera Pose Determination.IEEE Trans.Pattern Anal.Machine Intell.,1999,21(8):774-780.
  • 6Gao Xiaoshan,Hou Xiaorong,Tang Jianliang,Cheng Hangfei.Complete Solution Classification for the Perspective-Three-Point Problem.IEEE Trans.Pattern Anal.Machine Intell.,2003,25(8):930-943.
  • 7Hu Z Y,Wu F C.A Note on the Number of Solutions of the Noncoplanar P4P Problem.IEEE Trans.Pattern Anal.Machine Intell.,2002,24(3):1-6.
  • 8SCARAMUZZA D, FRAUNDORFER F. Visual odometry ( part I : the first 30 years and fundamentals) [ J]. IEEE Robotics & Automation Magazine,2011,18(4) :80-92.
  • 9CHENG Yang, MAIMONE M W, MATTHIES L. Visual odometry on the mars exploration rovers: a tool to ensure accurate driving and science imaging [ J]. IEEE Robotics & Automation Magazine, 2006,13(2) :54-62.
  • 10MAIMONE M, CHENG Yang, MATTHIES L. Two years of visual odometry on the mars exploration myers:field reports [ J ]. Journal ofField Robotics ,2007,24 ( 3 ) : 169-186.

共引文献35

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部