摘要
针对铁路客运量影响因素众多、变量之间映射关系复杂的特点,使用主成分分析方法对客运量影响因素进行处理,降低相关变量维数,消除变量间的多重共线性关系,并将转换后的变量输入到基于GA-BP的神经网络模型中,完成对于铁路客运量的预测。仿真结果表明,该模型相较于BP神经网络模型,具有更好的预测精度和更简单的结构。
Considering numerous factors influencing railway passenger volume and complex mapping relation among varia-bles, the paper firstly deals with the influencing factors with PCA (principal component analysis) method and reduces the dimension of related variables to eliminate multiple co-linear relations between variables. Then, it enters the converted vari- ables into neural network model based on GA-BP and predicts the railway passenger volume. The simulation result shows that this model is more accurate and simpler than BP neural network model.
出处
《军事交通学院学报》
2017年第2期84-89,共6页
Journal of Military Transportation University
关键词
铁路客运量预测
主成分分析
神经网络
railway passenger volume prediction
PCA (principal component analysis)
neural network