期刊文献+

热处理对FeCoCrNiMnC_(0.1)高熵合金组织结构与力学性能的影响 被引量:7

Effects of Heat Treatment on Microstructure and Mechanical Properties of FeCoCrNiMnC_(0.1) High-Entropy Alloy
下载PDF
导出
摘要 采用冷坩埚悬浮熔炼法制备了FeCoCrNiMnC_(0.1)(下标为物质的摩尔比,未标注为1)高熵合金铸锭,利用X射线衍射仪、扫描电镜、显微硬度计、万能材料试验机等研究了热处理对合金组织结构和力学性能的影响。结果表明:铸态FeCoCrNiMnC_(0.1)高熵合金组织由基体和晶界处的M_7C_3相组成,随着热处理温度升高,合金中颗粒状M_(23)C_6相长大且分布均匀;随着热处理温度上升,合金硬度先降低后升高再降低,在热处理温度900℃时达到最大值279.1HV;合金强度先增后减,在热处理温度800℃时最高,为930MPa。 FeCoCrNiMnC0.1(Subscript is the molar ratio of matter, and the not marked subscript is 1) high-entropy alloy ingots were prepared by using cold crucible levitation melting method. Effect of heat treatment on microstructure and mechanical properties of the alloy was researched by using X ray diffraction(XRD), scanning electron microscope(SEM), micro-hardness tester and universal material testing machine. The results show that the microstructure of as cast FeCoCrNiMnC0.1high entropy alloy is composed of the matrix and M7C3 phase at grain boundaries. With the increase of heat treatment temperature, the granular M23C6 phase in the alloy grows up and distribution is uniform. The hardness of the alloy decreases firstly then increases, and then decreases, and the maximum value(279.1HV)is reached at heat treatment temperature of 900℃. The strength of alloy increases firstly and then decreases, which is the highest(930MPa) at heat treatment temperature of 800℃.
出处 《热加工工艺》 CSCD 北大核心 2017年第4期226-230,共5页 Hot Working Technology
基金 福建省高校产学合作重大项目(2014H6005)
关键词 高熵合金 热处理 组织结构 力学性能 high-entropy alloy heat treatment microstructure mechanical properties
  • 相关文献

参考文献7

二级参考文献138

  • 1朱立光,路文刚.GCr15轴承钢高温力学性能的研究[J].特殊钢,2007,28(4):7-9. 被引量:30
  • 2Greer A L. Confusion by design [J]. Nature, 1993, 366 (25) : 303- 304.
  • 3Yeh J W, Chen S K, Gan J Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprineipal metallic elements [J]. Metallurgical and Materials Transactions A, 2004, 35 (8) : 2533-2536.
  • 4Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6 (5) : 299-303.
  • 5Shun T T, Hung C H, Lee C F. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700℃ [J]. Joumal ofAlloys and Compounds, 2010, 495 (1) : 55-58.
  • 6Shun T T, Du Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy [J]. Journal of Alloys and Compounds, 2009, 478 (1-2) : 269-272.
  • 7Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.3CoCrFeNi alloy [J]. Intermetallics, 2010, 18 (6): 1244-1250.
  • 8Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Materials Science and Engineering A, 2008, 491 (1-2): 154-158.
  • 9Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high- temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition [J]. Metallurgical and Materials Transaction A, 2004, 35A (5): 1465-1469.
  • 10Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi [J]. Journal of Alloys andCompounds, 2009, 486 (1-2): 427-435.

共引文献144

同被引文献88

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部