摘要
针对NEPE推进剂/衬层界面化学组成复杂,缺乏有限表征手段的问题,采用XPS对其进行了分析测试,并对测试结果进行了系统分析。综合分析了XPS测试特点与NEPE推进剂配方组成,揭示了XPS定量测试结果与配方理论值的差异的原因,对C、N元素各化学态的XPS特征峰进行了合理的归属。研究结果表明,硝酸酯因为在建立高真空过程中挥发,XPS检测不到;固体填料因为表面包覆,XPS检出结果比配方含量小1~2个数量级;NEPE推进剂/衬层界面存在NPBA富集;AD1和AD2向衬层迁移较深,且呈明显的梯度分布。
The chemical compositions of NEPE propellant/liner interface are too complex to characterize effectively by conventional test methods.In this paper,XPS technique was used to analyze the chemical compositions of NEPE propellant/liner interface systematically.The XPS measurement features and ingredients of NEPE propellant were analyzed firstly,which reveal the reason of the difference between the XPS quantitative test results and theoretical data.The XPS characteristic peaks of all the chemical states of elements C and N were also classified reasonably.Research results show that the volatilization of nitric ester during the high vacuum causes the invalid detection by XPS.The XPS test results are much lower than the theoretical data owing to the surface coating of solid particles.Moreover,the enrichment area of NBPA is found in NEPE propellant/liner interface and obvious migrations of AD1 and AD2 to liner with a distinct gradient distribution are also detected.
出处
《固体火箭技术》
EI
CAS
CSCD
北大核心
2017年第1期45-51,共7页
Journal of Solid Rocket Technology
基金
国防973项目(613142)
关键词
NEPE推进剂
物理化学
界面
X射线光电子能谱
NEPE propellant
physical chemistry
interface
X-ray photoelectron energy spectrum