期刊文献+

自陡峭和自频移效应对有限背景解的影响

Influence of the Self-Steepening and Self-frequency Shift Effects on the Transmission Properties of Three Solutions on the Finite Background
原文传递
导出
摘要 基于自聚焦的非线性薛定谔方程,研究了自陡峭效应和自频移效应对Peregrine怪波(PS)、Akhmediev呼吸子(AB)和Kuznetsov-Ma孤子(KMS)传输特性的影响。数值模拟结果表明:这两种效应使三种有限背景解分裂加快,相邻最大压缩脉冲间的距离减小,脉冲中心发生偏移,且参数越大,分裂得越早,脉冲中心偏移量越大。 Based on the self-focusing nonlinear Schrdinger(NLS)equations,we investigated numerically the influence of the Self-Steepening and Self-frequency shift effects on the transmission properties of Peregrine rogue wave,Akhmediev breather and Kuznetsov-Ma soliton.The results show that the two effects causeed splitting at an increasing rate for PS,AB and KMS,and the distance between the neighbor maximum compression pulses decreased,the center of peaks shifted.It also made the splitting earlier and the offsets of center peaks increased with the larger Self-Steepening coefficient.
出处 《量子光学学报》 北大核心 2017年第1期52-60,共9页 Journal of Quantum Optics
基金 山西省自然科学基金(2016011038)
关键词 怪波 AB KMS 自陡峭效应 自频移效应 Peregrine rogue wave Akhmediev breather Kuznetsov-Ma soliton Self-Steepening Self-frequency effect
  • 相关文献

参考文献2

二级参考文献22

  • 1K HARIF C, PELINOVSKY E, SLUNYAEV A. Rogue Waves in the Ocean [M]. Heidelberg : Spriger-Verlag. 2009 : 11-20.
  • 2SOLLIDR,ROPERSC,KOONATH P ,JAI.AI.I B. Optical Rogue Waves [J]. Lozdon:Nalure, 2007,450 : 1054-1057.
  • 3GANSHIN A N.EFIMOV V B,KOLMAKOV G V,MEZHOV-DEGLIND L P.MCCLINTOCK P V E. Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium [J]. Ptys Rev Lell, 2008. 101: 065303.
  • 4SHATS M, PUNZMANN H, XIA H. Capillary Rogue Waves [J]. Phys Rev Lett, 2010,104 : 104503.
  • 5OSBORNE A R,ONORATO M,SERIO M. The Nonlinear Dynamics of Rogue Waves and Holes in Deep-Water Gravity Wave Trains [J]. Phys Lett A, 2010,275 : 386-393.
  • 6YAN Z Y. Nonautonomous "Rogons" in the Inhomogeneous Nonlinear SchrOdinger Equation with Variable Coefficients [J]. Phys Lett A ,2010,374:672-679.
  • 7ERKINTALO M, HAMMANI K,KIBLER B,F1NOT CH, AKHMEDIEV N,DUDLEY J M, GENTY G. Higher-Order Modulation Instability in Nonlinear Fiber Optics [ J] PhysRev Lett, 2011,107:253901.
  • 8PEREGRINE D H. Water Waves. Nonlinear Schr6dinger Equations and their Solutions [J]. J Austral Math Soc Set B, 1983,25:16-43.
  • 9KUZNETSOV E A. Solitons in a Parametrically Unstable Plasma [J]. Soy Phys Dokl, 1977,22:507-508.
  • 10MAYA C. The Perturbed Plane-Wave Solutions of the Cubic Schrodinger Equation [J]. Stud Appl Math, 1979,60:43- 58.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部