期刊文献+

一种基于FPGA的高频超声灰阶血流成像系统设计 被引量:3

Design of high-frequency ultrasound grayscale blood flow imaging system based on field programmable gate array
下载PDF
导出
摘要 目的 :研制一套基于现场可编程门阵列(field-programmable gate array,FPGA)的高频超声灰阶血流成像系统,实现浅表器官血流和组织的同时实时成像。方法:该系统主要由超声换能器、超声发射接收模块、上位机成像软件和外围设备组成。超声换能器采用20~50 MHz单阵元聚偏氟乙烯(polyvinylidene fluoride,PVDF)换能器;超声发射接收模块采用高速模数转换器(analog to digital converter,ADC)直接将射频回波信号提前数字化,再由FPGA对数字信号进行多次发射叠加、滤波、检波、对数放大及二次采样等处理,并由USB接口传输至上位机进行实时显示。结果:使用该系统对人手背部静脉距表皮1 mm的血管进行超声扫描检查,可得到各种发射频率对应的血流结果图像。结论:该系统实现了浅表器官血流的实时成像,方案结构简洁清晰,为高频超声灰阶血流成像奠定了实验基础。 Objective To develop a set of high-frequency ultrasound grayscale blood flow imaging system based on field programmable gate array(FPGA) to execute simultaneous imaging of superficial blood flow and tissues. Methods This system was mainly composed of an ultrasonic transducer, an ultrasonic transmission and receiving modules, imaging software in host computer and peripheral equipment. A PVDF transducer with the frequency between 20 and 50 MHz was used for the ultrasonic transducer. In transmission and receiving modules, the radio frequency echo signals were digitized by high-speed A/D. Then the digital signals were transmitted, added, filtered, demodulated, log amplified, double sampled, and lastly transferred to the host computer by USB interface for real-time display. Results A vascular 1 mm far form the surface of the hand skin was examined by this system. Four blood flow images were obtained in corresponding with four transmission frequencies. Conclusion Real-time superficial organ blood flow imaging is realized by this system. The solution has the architecture concise and clear, and lays an experimental foundationfor high-frequency ultrasound gray-scale blood flow imaging.
出处 《医疗卫生装备》 CAS 2017年第2期11-15,共5页 Chinese Medical Equipment Journal
基金 国家自然科学基金青年项目(61601520) 中央级公益性科研院所基本科研业务专项资助课题(2016ZX310102 2016ZX310108) 天津市科技计划项目(15JCZDJC327000)
关键词 超声 现场可编程门阵列 血流 灰阶 成像系统 ultrasound FPGA blood flow gray scale imaging system
  • 相关文献

参考文献4

二级参考文献22

  • 1Quistgaard JU. Signal acquisition and processing in medical diagnostic ultrasound [ J ]. IEEE Signal Processing Magazine, 1997,14:67 - 73.
  • 2冯若,刘忠齐,姚锦钟,等.超声诊断设备原理及设计[M].北京:中国医药科技出版社,1991.
  • 3Christopher JH, James MP, Robert JE, et al. Advance in ultrasound [J].Clinical Radiology, 2002, 57 : 157 - 177.
  • 4Patrick L, Ah M. Area-efficient FIR filter design on FPGA using distributed arithmetic [ A ]. In: IEEE International Symposium on Signal Processing and Information Technology [ C ]. Vancouver: IEEE,2006,6:248 - 252.
  • 5Girard P, Hbron O, Pravossoudovitch S, et al. Delay fault testing of look-up tables in SBAM based FPGA [J]. Journal of Electronic Testing, 2005, 21( 1 ) : 43 - 55.
  • 6EDA先锋工作室.AheraFPGA-CPLD设计[M].北京:人民邮电出版社.2005.
  • 7Abed KH, Vivek V, Nerurkar SB. High speed digital filter design using minimal signed digital representation [A]. In : The IEEE Southeast Conference[C]. Lauderdale: IEEE, 2005. 105 -110.
  • 8Uwe MB. Digital Signal Processing with Field Programmable Gate Arrays[M]. Berlin: Springer-Verlag, 2002.
  • 9Punchalard R, Lorsawatsiri A, Loetwassana W, ctal. Direct frequency estimation based adaptive algorithm for a second-order adaptive FIR notch filter[ J ]. Signal Processing, 2008,88 ( 2 ) : 315 - 325.
  • 10孙丰源,宋国祥主编.眼与眼眶疾病超声诊断[M].北京:人民卫生出版社,2010:245-337.

共引文献25

同被引文献9

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部