摘要
以奇异值分解理论为理论基础,通过对奇异值分解矩阵的架构分析,提出了滑移矩阵序列的架构方法。以该方法为指导,引入差异谱、主奇异和、最大特征值重构和最优化滤波器设计等方法,成功实现了滚动轴承故障特征提取。试验数据分析结果表明,提出的基于滑移矩阵序列奇异值分解的故障特征提取技术对于滚动轴承微弱冲击故障特征具有优越的识别和提取能力,对实现滚动轴承强噪声背景下的故障诊断具有重要意义。
We propose a slip vector construction method for fault diagnosis that is based on singular value decomposition theory and decomposition matrix frame analysis. Per this method's guidelines, we introduced the main singular value ratio, maximum eigenvalue reconstruction and optimized filter design methods. We successfully applied the proposed method to the fault feature extraction of rolling bearings. The experimental data analysis results showed that this method has suitably able to extract weak shock fault features. This paper has important implications in intelligent fault diagnosis of rolling bearings in circumstances of strong noise. © 2017, Editorial Department of JVMD. All right reserved.
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2017年第1期65-69,共5页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(51305392)
中国博士后科学基金资助项目(2013M540489)
飞行器海上测控实验室开放基金资助项目(FOM2014OF11)
浙江省重大科技专项基金资助项目(2012C01021-2)
关键词
奇异值分解
滑移矩阵
特征提取
滚动轴承
故障诊断
Bearings (machine parts)
Eigenvalues and eigenfunctions
Extraction
Failure analysis
Feature extraction
Roller bearings
Singular value decomposition