期刊文献+

ERSearch:一种高效的子图查询算法 被引量:2

ERSearch:An Efficient Subgraph Query Algorithm
下载PDF
导出
摘要 子图查询是图数据库研究中的一个重要问题,许多方法基于"过滤-验证"策略进行子图查询,算法研究的重点为快速找到有效的特征集.通过对特征模式在数据图集中的嵌入信息进行分析,离线建立基于重叠关系、邻接关系和近邻关系的嵌入关系索引,提出基于嵌入关系的子图查询算法ERSearch.在给定查询图后,利用特征共现关系与特征嵌入关系联合进行过滤操作,并将过滤阶段的嵌入关系比对结果用于验证过程,提高验证效率.在真实及模拟数据上的实验表明,通过与PathIndex等方法的对比,ERSearch算法有效缩减了候选集的规模,能有效提高过滤与验证阶段的执行效率. Subgraph query is an important problem in the research of graph databases,and many methods about subgraph query are based on "filtering-verification strategy",which key target is to find effective feature patterns.Through the analysis of the embedding information of feature patterns in the data graphs,we propose to construct embedding relation indexing in the offline stage,and propose a new feature pattern embedding based subgraph query algorithm ERSearch.When query graph is given,we will use the co-occurrence relations and embedding relations combined to prune the unmatched data graphs,and the comparing results of embedded relationship in filtering phase can be used in the verification process,improving the efficiency of the verification.Via the experiment in the real and synthetic datasets,compared with Pathlndex and other methods,we show that our algorithm can effectively reduce the size of candidate set,and effectively improve the efficiency of filtering and verification stages.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第2期368-375,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61033010 No.61272065 No.61472453) 广东省自然科学基金(No.S2011020001182 No.2014A030309013) 广东省科技计划基金(No.2009B090200450 No.2010A040303004 No.2011B040200007) 广东省医学科研基金(No.B2014174)
关键词 子图查询 特征模式 嵌入关系 图索引 图数据库 subgraph query feature pattern embedding relationship graph index graph database
  • 相关文献

参考文献2

二级参考文献51

  • 1B W Kemighan, S Lin. An efficient heuristic procedure for par- titioning graphs I J]. The Bell system technical journal, 1970,49 (1) :291 - 307.
  • 2M Belkin, P Niyogi. Laplacian eigenmaps and stxtral tech- niques for embedding and clustering I A]. Advances in Neural Information Prcr_essing Systems I C ]. Vancouver, Canada: M IT Press,2001,14:585 - 591.
  • 3S White, P Smyth. A spectral clustering approach to finding communities in graphs [ A. Kamath C,Gotximan A,eds.Pm- ceedings of the 5th SIAM International Conference on Data Mining [ C]. Philadelphia: SIAM, 2005.76 - 84.
  • 4F Wu, B A Huberman. lmding communities in linear time: a physics approach I J ]. The European Physical Journal B-Con- densed Matter and Complex Systems, 2004,38 (2) : 331 - 338.
  • 5H Zhou. Distance, Dissimilarity index, and network community structure [ J] .Physical Review E,2003,67(6) :061901.
  • 6P Ports, M Latapy. Computing communities in large networks using random walks I A]. Proceedings of Computer and Infor- marion Sciences,-ISCIS 2005 [ C ]. Berlin, Heidelberg: SpringerVerlag, 2005,3733 ( 31 ) : 284 - 293.
  • 7M Girvan, M E J Newman. Community slructttre in social and biological networks [ J]. Proceedings of National Academy of Science of the United States of America, 2002, 99:7821 - 7826.
  • 8M E J Newman,M Girvan. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69: 026113.
  • 9M E J Newman. Fast algorithm for detecting community struc- ture in networks [ J] .Physical Review E,2004,69:066133.
  • 10F Radicchi, C Castellano, F Cecconi, V Loreto, D Parisi. Defining and identifying communities in networks [ J ]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2004,101(9) :2658 - 2663.

共引文献30

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部