期刊文献+

基于关联规则挖掘的商业银行信贷产品交叉营销研究 被引量:1

Cross Marketing of Credit Products of Commercial Banks Based on Association Rule Mining
下载PDF
导出
摘要 交叉营销是商业银行开展营销活动、进行客户关系管理,降低成本、增加利润的关键。关联规则挖掘能够分析银行海量交易数据获得潜在规则,为商业银行交叉营销提供强有力的支持。采用关联规则分析中的Apriori和Carma算法,从信贷产品类别和具体产品两个层面,对商业银行信贷产品的年度交易记录进行数据挖掘。研究结果显示,关联规则挖掘应用于商业银行信贷产品交叉营销研究是可行的和有效的,对于已购买不同种类、不同具体产品的客户,需要综合考虑关联规则的具体形式、支持度、置信度等各方面,制定批量营销、精准营销、套餐营销等不同的交叉营销策略。 Cross marketing is the key to holding marketing activities, customer relationship management, decrease of cost and increase of revenue for commercial banks. Association rule mining could help analyze the large amount of transaction data on banks for obtaining po- tential rules and offering strong support to the cross marketing of commercial banks. With Apriori and Carma, two analysis algorithms of association rules, the annual transaction record of the credit products of commercial banks are analyzed from the perspectives of credit product category and specific product. The result shows that it is feasible and effective to apply association rules mining into the study of cross marketing of credit products of commercial banks. As to customers who buy specific products of different category, the specific form, support degree, and degree of confidence should be considered comprehensively for creating different cross marketing such as bulk mar- keting, precision marketing and package marketing.
作者 许荻迪 XU Didi
出处 《商业经济》 2017年第3期103-106,共4页 Business & Economy
关键词 关联规则挖掘 商业银行 信贷产品 交叉营销 association rule mining, commercial banks, credit product, cross marketing
  • 相关文献

参考文献7

二级参考文献40

  • 1HAN Jiawei KAMBER M.数据挖掘的概念与技术[M].北京:机械工业出版社,2001..
  • 2Han Jiawei, Kamber M. Data Mining: Concepts and Techniques[ M]. Beijing: China Machine Press,2001.
  • 3Agrawal R,Skirant R. Fast Algorithms for Mining Association Rules in Large Databases, IBM Research Report RJ9839[R].San Jose,California: IBM Almaden Research Center, 1994.
  • 4SCHAFER J B,KONSTAN J A,RIEDL J. Recommender systems in e-commerce[A]. In ACM Conference on Electronic Commerce (EC- 99) [C]. New York: ACM Press, 1999. 158-166.
  • 5KOHAVI R,PROVOST F. Applications of data mining to electronic commerce[J]. Data Mining and Knowledge Discovery, 2001,5(1-2):5-10.
  • 6AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ A].BUNEMAN P, JAJODIA S. In SIG MOD'93[C]. New York:ACM Press, 1993. 207- 216.
  • 7SAVASERE A,OMIECINSKI E,NAVATHE S. An efficient algorithm for mining association rules in larges databases[A].DAYAL U, GRAY P M D, NISHIO S. Proceedings of the 21th International Conference on Very Large Data Bases[C].San Mateo,CA. Morgan Kanfmann, 1995. 432-444.
  • 8Koperski K,Proceedings of the 4thInternational Symp.on L arge Spatial Databases(SSD’95 ),1995年,47页
  • 9Han J,Proceedings of the2 1st InternationalConference on Very L arge Data Bases,1995年,420页
  • 10Li Deyi,Research Development Computers,1995年,42卷,8期,32页

共引文献180

同被引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部