期刊文献+

基于支持向量机与朴素贝叶斯的犯罪度理论研究 被引量:2

Research on Crime Degree Theory of Internet Speech Based on Support Vector Machine and Naive Bayes
下载PDF
导出
摘要 为使安防系统具有犯罪预警的功能,以达到真正意义的智能化,提出网络言论犯罪度概念。该概念指某个体通过社交网络言论表现出的犯罪可能性。通过对犯罪心理与言论特征之间关系的研究,提出了一种基于朴素贝叶斯与SVM(Support Vector Machine)的网络言论犯罪度理论。该理论运用朴素贝叶斯和SVM等机器学习方法,结合犯罪心理学,建立了网络言论犯罪度理论框架与数学模型。实验表明,基于该理论的预警系统具有较好的犯罪预警能力。 In order to make the security system has the capability of early warning of crime,to achieve the real meaning of intelligent. Crime degree theory of internet speech is put forward,it refers to an individual's possibility of crime,which is shown by social network speech. The theory used multiple analytical methods such as naive bayes and SVM(Support Vector Machine),combining criminal psychology,establishing the theoretical framework and mathematical model. Experimental result has shown that it works well.
出处 《吉林大学学报(信息科学版)》 CAS 2017年第1期20-25,共6页 Journal of Jilin University(Information Science Edition)
基金 教育部博士点基金资助项目(20120061110091)
关键词 支持向量机 朴素贝叶斯 犯罪预警 support vector machine(SVM) naive Bayesian crime pre-alarming
  • 相关文献

参考文献4

二级参考文献29

  • 1周蕾,朱巧明.基于统计和规则的未登录词识别方法研究[J].计算机工程,2007,33(8):196-198. 被引量:21
  • 2牛强,王志晓,陈岱,夏士雄.基于SVM的中文网页分类方法的研究[J].计算机工程与设计,2007,28(8):1893-1895. 被引量:22
  • 3Zeidenberg, Matthew. Neural Networks in Artificial Intelligence[M]. 1990: Ellis Horwood Limited. 1990. ISBN -013 -612185-3.
  • 4Breiman L. Random Forests [ J ]. Machine Learning, 2001145(1):5-32.
  • 5Andy Liaw and Matthew Wiener. ” Classification and Regressionby randomForest" [ J]. R News,2002,2/3:18.
  • 6Freund Yoav,Schapire Robert E. A Decision - Theoretic General-ization of on-Line Learning and an Application to Boostingf J].1995.CiteSeerX: 10. !. 1.56.9855.
  • 7HIDALGO C. Big Data Visualization Engines for Understanding the Development of Countries, Social networks, Culture and Cities [ C]//Proceedings of the 25th ACM Cnnference on Hypertext and Social Media. New York: ACM, 2014: 3.
  • 8STOLPER C D, KAHNG M, LIN Z, et al. Glo-Stix: Graph-Level Operations for Specifying Techniques and Interactive Exploration [ J ]. Visualization and Computer Graphics, IEEE Transactions on, 2014, 20(12) : 2320-2328.
  • 9WAN H Y, LIN Y F, WU Z H. et al. Discovering Typed Communities in Mobile Social Networks [ J ]. Journal of Computer Science and Technology, 2012, 27 ( 3 ) : 480-491.
  • 10NEWMAN M E J. Communities, Modules and Large-Scale Structure in Networks [J]. Nature Physics, 2012, 8( 1 ) : 25-31.

共引文献113

同被引文献32

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部