期刊文献+

基于神经网络的小时间粒度交通流预测模型 被引量:12

Traffic Flow Prediction Model Based on Neural Network in Small Time Granularity
下载PDF
导出
摘要 为解决传统车队离散模型基于概率分布假设和现有交通流预测时间粒度过大不能应用于自适应信号配时优化等问题.在车队离散模型的建模思路上,先分析了下游交叉口车辆到达与上游交叉口车辆离去之间的关系,基于此构建了基于神经网络的小时间粒度交通流预测模型.该模型以上游交叉口离去流量分布为输入,下游交叉口到达流量分布为输出,时间粒度为5 s.最后,通过实际调查数据标定模型参数并应用模型预测下游交叉口到达流量.结果表明,与Robertson模型相比,本文模型预测结果能够更好地反映交通流的变化特征,平均预测误差减少了8.3%.成果可用于信号配时优化. The traditional platoon dispersion model is based on the hypothesis of probability distribution,and the time granularity of the existing traffic flow prediction is too big to be applied to the adaptive signal timing optimization.In order to solve these problems, from the view of the platoon dispersion model, the relationship between vehicle arrival at the downstream intersection and vehicle departure from the upstream intersection is analyzed, then, a traffic flow prediction model based on neural network in small time granularity is proposed.The departure flow at the upstream is taking as the input and the arrival flow at the downstream intersection is taking as the output in this model, which has the time granularity of 5 s.Finally,the proposed model parameters are calibrated by the actual survey data, and this model is applied to predict the arrival flow of the downstream intersection.The results show that the proposed model can better reflects the fluctuant characteristics of traffic flow compared with Robertson model, and the prediction error is reduced by 8.3%.As a result, this result provides theoretical support for signal timing optimization.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第1期67-73,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(51578465 71402149) 西南交通大学拔尖创新人才培育(2016-2017)~~
关键词 交通工程 交通流预测 神经网络 车队离散 信号配时优化 traffic engineering traffic flow prediction neural network platoon dispersion signal timing optimization
  • 相关文献

参考文献4

二级参考文献46

  • 1陈浩,陈立辉,毕笃彦,毛柏鑫.BP网络和支持向量机在非线性函数逼近中的应用[J].航空计算技术,2004,34(3):27-30. 被引量:7
  • 2田乃硕,李泉林.PH分布及其在随机模型中的应用[J].应用数学与计算数学学报,1995,9(2):1-15. 被引量:23
  • 3Sanchez V D.Advanced support vector machines and kernel methods[J].Neurocomputing,2003,55:5-20.
  • 4Nuller K R,Ymola A J,Ratsch G,et al.Predicting time series with support vector machine[C]// Proceedings of ICANN97,1997:999-1004
  • 5Gunn S R.Support vector machine for classification and regression[R].University of Shouthampton,1998.
  • 6Yang H,Chan L,King I.Support vector machine regression for volatile stock market prediction[C]//IDEAL 2002,LNCS 24412:391-396,2002.
  • 7Wu Chun-hsin,Wei Chia-chen,Chang Ming-hua,et al.Travel time prediction with support vector regression[J].IEEE Transaction on Intelligent Transportation Systems,2004,5(12):276-281.
  • 8陈小鸿,冯均佳,杨超.基于浮动车数据的行程时间可靠度特征研究[J].城市交通,2007,5(5):42-45. 被引量:12
  • 9Rafael V Borges, Artur d’Avila Garcez, Luis C Lamb.Learning and representing temporal knowledge inrecurrent networks [ J]. IEEE Transactions on NeuralNetworks, 2011, 22(12) : 2409-2421.
  • 10DONG C J,SHAO C F, XIONG Z H,et al. Short-termtraffic flow forecasting of road network based on elmanneural network [ J]. Journal of Transportation SystemsEngineering and Information Technology. 2010, 10(1):145-151.

共引文献95

同被引文献85

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部