期刊文献+

SPH核函数光滑长度最优选取和自适应准则研究 被引量:4

A Study of Optimal and Adaptive Rule of Smooth Length in SPH Kernel Function
下载PDF
导出
摘要 基于小波分析理论和RKPM再生核函数研究无网格方法 SPH中多尺度诊断工具,多尺度再生核函数使得数值计算在不同尺度上的响应分离,并通过动态伸缩窗函数给出计算域不同位置的时频特性,实现在无网格体系下构造网格计算方法的"自适应网格",从而达到对不同流场位置多分辨率分析的目的.利用多尺度诊断工具中的小波分解算法给出SPH核函数在频域内能量残差估计,发展一种核函数光滑长度最优选取准则.最后,基于可压缩流场激波稀疏波共存的现象,针对传统的光滑长度自适应的缺陷,构造一种避免数值计算"拖尾"现象的自适应准则. Based on wavelet analysis theory and reproducing kernel function,a muhiscale diagnostic tool for meshfree method SPH is developed. Multi-scale reproducing kernel function make it possible to separate numerical computation response at different scales. Frequency characteristics of computational domain at different position is depicted by dynamic retractable window function, which constructs "adaptive mesh" in mesh method for meshfree system to carry muhi-resolution analysis at different position of flow field. With wavelet decomposition algorithm in multi-scale diagnostic tool, a kernel smoothing length optimal selection rule is developed on the basis of estimated energy error ratio of SPH kernel function in frequency domain. Finally, for shock/rarefaction wave coexistence in compressible flow field and defects of traditional method, we construct a numerical method to avoid "tailing" phenomenon.
作者 赵亚洲 马智博 ZHAO Yazhou MA Zhibo(Graduate School of China Academy of Engineering Physics, Beijing 100088, China Institute of Applied Physics and Computational Mathematics, Beijing 100094, China)
出处 《计算物理》 CSCD 北大核心 2017年第1期29-38,共10页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11371066)资助项目
关键词 无网格SPH 多尺度再生核函数 多分辨率分析 最优支撑域半径 自适应准则 meshfree SPH method multiscale reproducing kernel function multi-resolution analysis optimal support radius adaptation guidelines
  • 相关文献

参考文献1

二级参考文献12

  • 1Li Ruo, Tang Tao, Zhang Ping Wen. A moving mesh finite element algorithm for singular problems in two and three space dimensions [J]. J Comput Phys, 2002, 177:365 -393.
  • 2Berger M J, Leveque J L. Adaptive mesh refinement using wave-propagation algorithms for hyperbolie systems [ J]. SIAM J Numer Anal, 1998, 35:2298 -2316.
  • 3Antonio B, Anna M-G, Pep M. Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws [ J]. Applied Numerical Mathematics, 2012, 62:278 - 296.
  • 4Tang Lingyan, Song Songhe. A multiresolution finite volume scheme for two-dimensional hyperbolic conservation laws [ J]. J Comput Appl Math, 2008, 214:583-595.
  • 5Borges R, Carmona M, Costa B, Don W-S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J]. J Comput Phys, 2008, 227:3191 -3211.
  • 6Gustaaf B Jacobs, Don W-S. A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks I J]. J Comput Phys, 2009, 228:1365 -1379.
  • 7Bihari B, Harten A. Muhiresolution scheme for the numerical solution of 2D conservation laws [ J]. SIAM J Sci Comput, 1997, 18 : 315 - 354.
  • 8Harten A. Muhiresolution algorithms for the numerical solution of hyperbolic conservation laws [ J ]. Comm Pure and Appl Math, 1995, 48:1305-1342.
  • 9Lax P D, Liu X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes [ J]. SIAM J Sci Comput, 1998, 19:319-340.
  • 10Brain van Leer. Flux vector splitting for Euler equations [ J]. Lecture Notes in Physics, 1982, 1970:507 -512.

共引文献2

同被引文献29

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部