期刊文献+

一类分数阶微分方程积分边值问题正解的分歧性

Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations
下载PDF
导出
摘要 利用分歧方法和拓扑度理论,研究了一类带参数的分数阶微分方程积分边值问题正解的存在性.根据格林函数的性质,得到了系统正解的存在的若干充分条件.最后,通过数值例子验证了所得结果的有效性. Using bifurcation techniques and topological degree theory, this paper investigates the existence of positive solutions for a class of integral boundary value problems of fractional differential equations. Based on the property of the Green function, several sufficient conditions are presented for the existence of positive solutions. Finally, the study of an illustrative example shows that the obtained results are effective.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2017年第1期13-22,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(61503225) 山东省自然科学基金(ZR2015FQ003) 山东省自然科学杰出青年基金(JQ201613)
关键词 Riemann-Liouville分数阶微分方程 积分边值问题 分歧方法 正解 Riemann-Liouville fractional differential equation integral boundary value problem bifurcation technique positive solution
  • 相关文献

参考文献2

二级参考文献26

  • 1Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006.
  • 2Li Haitao, Kong Xiangshan, Yu Changtian. Existence of three non-negative solutions for a three point boundary value problem of nonlinear fractional differential equations[J]. Electron J Diff Equ, 2012, 88: 1-12.
  • 3Wei Zhongli, Dong Wei, Che Junling. Periodic boundary value problems for fractional differ- ential equations involving a Riemann-Liouville fractional derivative[J]. Nonlinear Analysis, 2010, 73(10): 3232-3238.
  • 4Zhang Shuqin. Positive solutions for boundary-value problems of nonlinear fractional differ- ential equations[J]. Electron J Diff Eaua, 2006, 36: 1-12.
  • 5Chen Talyong, Liu Wenbin. An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator[J]. Appl Math Lett, 2012, 25: 1671-1675.
  • 6Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equation[M]. New York: John Wiley, 1993.
  • 7Cheng Lingling, Liu Wenbin, Ye Qingqing. Boundary value problem for a coupled system of fractional differential equations with p-Laplacian operator at resonance[J]. Electron J Diff Equ, 2014, 60: 1-12.
  • 8Shen Tengfei, Liu Wenbin, Chen Taiyong, et al. Solvability of fractional multi-point boundary-value problems with p-Laplacian operator at resonance[J]. Electron J Diff Equ, 2014, 58: 1-10.
  • 9Zhao Yige, Sun Shurong, Han Zhenlai, et al. The existence of multiple positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16: 2086-2097.
  • 10Liu Yansheng, Yu Huimin. Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions[J]. Abstract Appl Anal, 2013, Article ID 942831.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部