期刊文献+

Banach空间含导数项的二阶脉冲微分方程的解 被引量:1

The Solutions for Second Order Impulsive Differential Equations with Dependence on the Derivative Terms in Banach Spaces
下载PDF
导出
摘要 讨论了抽象空间中非线性项含一阶导数的二阶脉冲微分方程边值问题{-u″(t)=f(t,u(t),u'(t)),t≠tk,t∈J=[0,1],-Δu'|_(t=t_k)=I_k(u(t_k),u'(t_k)),k=1,2,…,m,u(0)=θ,u(1)=θ解的存在性与唯一性,其中f∈C(J×E×E,E),I_k∈C(E×E,E),k=1,2,…,m.通过选取恰当的工作空间及等价范数,在非线性项f(t,x,y)及脉冲函数Ik满足较一般的非紧性测度条件下,结合新的非紧性测度估计技巧与凝聚映射的Sadovskii不动点定理,得到解及正解的存在性结果.此外,进一步讨论该问题唯一解的存在性. In this paper,we consider the existence and uniqueness solutions for second order impulsive differential equations with dependence on the first order derivative {-u″(t)=f(t,u(t),u'(t)),t≠tk,t∈J=[0,1], -Δu'|(t=tk)=Ik(u(tk),u'(tk)),k=1,2,…,m, u(0)=θ,u(1)=θ in Banach spaces,where,f∈ C( J × E × E,E),Ik∈C( E × E,E),k = 1,2,…,m. By choosing proper working space and equivalent norm,while the nonlinear term f( t,x,y) and Ik( x,y) satisfy more general non-compactness measure conditions,we obtain the existence results of solutions and positive solutions combining with the estimation skills of the non-compactness measure and the Sadovskii fixed-point theorem. Besides,we discuss the uniqueness of the solutions of this boundary value problem.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第1期45-50,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11261053) 甘肃省自然科学基金(1208R-JZA129)
关键词 BANACH空间 非紧性测度 凝聚映射 不动点定理 Banach space non-compactness measure condensing mapping fixed-point theorem
  • 相关文献

参考文献5

二级参考文献51

  • 1张阳,薛运华.求解一类高阶线性Fredholm积分微分方程的Tau方法[J].高等学校计算数学学报,2005,27(S1):1-5. 被引量:1
  • 2Xiangping Chen, Rengui Li (Dept. of Math., Jining University, Qufu 273155, Shandong).EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS TO SINGULAR SECOND ORDER NEUMANN BOUNDARY VALUE PROBLEMS[J].Annals of Differential Equations,2010,26(2):136-143. 被引量:3
  • 3R P Agarwal, D O'Regan. A Note on Existence of Nonnegative Solutions to Singular Semipeaitone Problems. Nonlinear Analysis, 1999, 36:615-622
  • 4Erbe L H, Wang H. On the Existence of Positive Solutions of Ordinary Differential Equations. Proc. Amer. Math. Soc., 1994, 120:743-748
  • 5Lan K Q, Webb J. Positive Solutions of Semilinear Differential Equations with Singularity. J. Differential Equations, 1998, 148:407-421
  • 6Erbe L H, Mathsen R M. Positive Solutions for Singular Nonlinear Boundary Value Problems. Non. Anal. TMA, 2001, 46:979-986
  • 7Guo Dajun, V Lakshmikantham. Nonlinear Problems in Abstract Cones. New York: Academic Press, Inc, 1988
  • 8Guo Dajun, Sun jingxian. Nonlinear Integral Equations. Jinan: Shangdong Science and Technology Press, 1987
  • 9Guo Dajun. Nonlinear Functional Analysis. Jinan: Shangdong Science and Technology Press, 1983
  • 10N B Huy, T D Thanh. Global Continua of Positive Solutions for Some Boundary Value Problems. Demonstratio Math., 2002, 35:303-309

共引文献77

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部