期刊文献+

A Joint Laplace Transform for Pre-exit Diffusion of Occupation Times 被引量:6

A Joint Laplace Transform for Pre-exit Diffusion of Occupation Times
原文传递
导出
摘要 For a < r < b, the approach of Li and Zhou(2014) is adopted to find joint Laplace transforms of occupation times over intervals(a, r) and(r, b) for a time homogeneous diffusion process before it first exits from either a or b. The results are expressed in terms of solutions to the differential equations associated with the diffusions generator. Applying these results, we obtain more explicit expressions on the joint Laplace transforms of occupation times for Brownian motion with drift, Brownian motion with alternating drift and skew Brownian motion, respectively. For a < r < b, the approach of Li and Zhou(2014) is adopted to find joint Laplace transforms of occupation times over intervals(a, r) and(r, b) for a time homogeneous diffusion process before it first exits from either a or b. The results are expressed in terms of solutions to the differential equations associated with the diffusions generator. Applying these results, we obtain more explicit expressions on the joint Laplace transforms of occupation times for Brownian motion with drift, Brownian motion with alternating drift and skew Brownian motion, respectively.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第4期509-525,共17页 数学学报(英文版)
基金 Supported by NSFC(Grant Nos.11171101,11171044,11571052 and 11671132) Key Laboratory of High Performance Computing and Stochastic Information Processing(HPCSIP) Education Ministry of China,Hu’nan Normal University Natural Science Foundation of Hu’nan Province(Grant No.2016JJ4061) Scientific Research Pro ject of Hu’nan University of Arts and Science(Grant No.15ZD05)
关键词 Laplace transform occupation time time-homogeneous diffusion exit time Brownian motion with alternating drift skew Brownian motion Laplace transform occupation time time-homogeneous diffusion exit time Brownian motion with alternating drift skew Brownian motion
  • 相关文献

参考文献2

二级参考文献53

  • 1Borodin A N,Salminen P.Handbook of Brownian Motion-Facts and Formulae.2nd ed.Basel:Birkhauser Verlag,2002.
  • 2Buchholz H,Lichtblau H,Vetzel K.The Confluent Hypergeometrie nction:with Special Emphasis on Its Applications.Berlin:Springer,1969.
  • 3Darling D A,Siegert A J F.The first passage problem for a continuous Markov process.Ann Math Statist,1953,24:624-639.
  • 4Feller W.Diffusion processes in one dimension.Trails Amer Math Soe,1954,77:1-31.
  • 5Gihman I I,Skorohod A V.Stochastic Differential Equations.New York-Heidelberg:Springer-Verlag,1972.
  • 6Ito K,McKean H P.Diffusion Processes and Their Sample Paths.Berlin:Springer-Verlag,1974.
  • 7Landriault D,Renaud J-F,Zhou X.Occupation times of spectrally negative Levy processes with applications.Stochastic Process Appl,2011,121:2629-2641.
  • 8Le Gall J F.One-dimensional stochastic differential equations involving the local times of the unknown process.In:Truman A,Williams D,eds.Stochastic Analysis and Applications:Proceedings of the International Conference held in Swansea,April 11-15,1983.Lecture Notes Math,Vol 1095.Berlin:Springer,1984,51-82.
  • 9Lejay A.On the constructions of the skew Brownian motion.Probab Surv,2006,3:413-466.
  • 10Li B,Zhou X.The joint Laplace transforms for diffusion occupation times.Adv Appl Probab,2013,45:1-19.

共引文献11

同被引文献5

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部