期刊文献+

Bammann-Chiesa-Johnson粘塑性本构模型的参数识别方法与验证 被引量:4

A Comprehensive Method of Parameter Identification and Validation for Bammann-Chiesa-Johnson Viscoplasticity Constitutive Model
下载PDF
导出
摘要 Bammann-Chiesa-Johnson(BCJ)粘塑性本构模型对材料力学响应的再现和预测能力强烈依赖于其模型参数的确定,而模型参数的确定往往是通过反分析方法来进行。由于BCJ粘塑性模型包含了应变、应变率和温度耦合效应以及加载路径和温度历史,其常数多达18个,所以寻找最佳的模型参数识别值十分繁琐。针对BCJ本构模型参数复杂、识别困难的问题,本文基于参数的物理意义,在准静态、蠕变及动态加载试验基础上,通过模型参数解耦分离、粒子群智能优化的方法分6步对18个材料常数进行识别,并用识别结果对1060纯铝动态加载试验力学响应进行模拟,模拟结果与试验结果符合良好。通过定量化误差分析,证明了BCJ粘塑性模型对实验数据的预测具有较高精度,该模型参数识别方法科学可行。 The Bammann-Chiesa-Johnson(BCJ)viscoplasticity constitutive model is advanced to predict mechanical behavior of metals.And the capability of prediction relies on the determination of the model parameters.Normally,the parameters would be identified by using the back-analysis method.However,the method is very complicated because there are quite a number of parameters in the BCJ model and it is not easy to obtain the optimal values.These parameters are involved to describe the coupling effects of strain,strain rate,temperature,as well as the load path and temperature history.This paper proposed a method to identify the 18 papameters,in which comprehensive experiments,based on the physics of the parameters,had been conducted,including quasi-static tests,creep tests and the split Hopkinson pressure bar(SHPB)tests,furthermore parameters decoupling and the Particle Swarm Optimization(PSO)algorithm had been applied.The dynamic mechanical response of Al 1060 was taken to validate the method and the prediction on flow stressesis in good agreement with the test data.The quantitative error analysis showed that the method was effective for a large range of strain rate and temperature variation with high accuracy.
作者 周婷婷 王罡 杨洋 李遥 帅茂兵 ZHOU Tingting WANG Gang YANG Yang LI Yao SHUAI Maobing(Science and Technology on Surface Physic and Chemistry Laboratory, Jiangyou 621908 Beijing Key Lab of Precision/ Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084)
出处 《材料导报》 EI CAS CSCD 北大核心 2017年第3期75-79,111,共6页 Materials Reports
基金 北京市自然科学基金面上项目(3152013) 清华大学摩擦学国家重点实验室自主科研重点项目(SKLT2013A01) 国家自然科学基金委员会-中国工程物理研究院联合基金(U1530140)
关键词 BCJ粘塑性模型 参数识别 参数解耦 粒子群智能优化算法 1060纯铝 Bammann-Chiesa-Johnson viscoplasticity model parameter identification parameter decoupling particle swarm optimization aluminum 1060
  • 相关文献

参考文献1

二级参考文献13

  • 1Bammann D J. An internal variable model of visco- plasticity[J]. International Journal of Engineering Science, 1984,22(8-10) : 1041-1053.
  • 2Bammann D J. Modeling Temperature and strain rate dependent large deformations of metals [J]. Applied Mechanics Reviews, 1990,43(5) : 312-319.
  • 3Bammann D J,Chiesa M L,Johnson G C. A state va- riable damage model for temperature and strain rate dependent metal[A]. Constitutive Laws: Theory, Ex- periments,and Numerical Implementation[C]. Barce- lona: International Center for Numerical Methods in Engineering, 1995.
  • 4Tanner A B. Modeling Temperature and Strain Rate History in Effects in OFHU Cu[D]. Ann Arbor: Georgia Institute of Technology, 1998.
  • 5Guo Y B, Wen Q, Woodbury K A. Dynamic material behavior modeling using internal state variable plas- ticity and its application in hard machining simula- tions[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME , 2006, 128 (3) .. 749-759.
  • 6Horstemeyer M F, Lathrop J, Gokhale A M, et al. Modeling stress state dependent damage evolution in a cast A1-Si-Mg aluminum alloy[J]. Theoretical and Applied Fracture Mechanics ,2000,33(1) :31-47.
  • 7Guo Y B,Wen Q, Horstemeyer M F. An internal state variable plasticity-based approach to determine dy- namic loading history effects on material property in manufacturing processes [J]. International Journal of Mechanical Sciences, 2005,47(9) 1423-1441.
  • 8Salehghaffari S, Rais-Rohani M, Marin E B, et al. A new approach for determination of material constants of internal state variable based plasticity models and their uncertainty quantification [J]. Computational Materials Science ,2012,55 : 237-244.
  • 9Kennedy J, Eberhart R. Particle swarm optimization [A]. Proceeding of IEEE International Conference on Neural Networks[C]. IEEE, 1995.
  • 10Shi Y, Eberhart R. A modified particle swarm optimi- zer[A]. Proceeding of IEEE World Congress on Com- putational Intelligence[C]. IEEE, 1998.

共引文献2

同被引文献56

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部