期刊文献+

化学气相沉积制备大面积高质量石墨烯的研究进展 被引量:6

Research Progress of Large-area and High-quality Graphene Prepared by Chemical Vapor Deposition
下载PDF
导出
摘要 石墨烯是由单层碳原子紧密堆积形成的一种碳质新材料,具有优良的电学、光学、热学及力学等性质。在众多的石墨烯制备方法中,化学气相沉积(Chemical vapor deposition,CVD)最有可能实现大面积、高质量石墨烯的可控制备。综述了CVD方法制备大面积、高质量石墨烯的影响因素,包括衬底、碳源及生长条件(气体流量、生长温度、等离子体功率、生长压强、沉积时间、冷却速率等)。最后展望了CVD方法制备石墨烯的发展方向。 Graphene,as a new kind of carbonaceous materials,is formed by the close accumulation of a single layer of carbon atoms.It has many unique properties such as electricity,photology,thermology and mechanics.Among all the methods for preparation of graphene,chemical vapor deposition(CVD)is the most likely to achieve controllable preparation of a large-area and high-quality graphene.In this paper,we mainly overview the influence factors of large-area and high-quality graphene prepared by CVD,including substrate,carbon source and growth conditions(gas flow rate,growth temperature,plasma power,growth pressure,deposition time,cooling rate,etc).Finally,the development direction of the preparation of graphene by CVD method is proposed.
作者 石晓东 王伟 尹强 李春静 SHI Xiaodong WANG Wei YIN Qiang LI Chunjing(Tianjin Key Laboratory of Electronic Materials and Device, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401)
出处 《材料导报》 EI CAS CSCD 北大核心 2017年第3期136-142,共7页 Materials Reports
基金 河北省在读研究生创新资助项目(220056) 河北省自然科学基金(F2012202075)
关键词 石墨烯 化学气相沉积 衬底 碳源 生长条件 graphene chemical vapor deposition substrate carbon source growth conditions
  • 相关文献

参考文献13

二级参考文献203

  • 1杜炳志,漆红兰.电化学抛光技术新进展[J].表面技术,2007,36(2):56-58. 被引量:26
  • 2田民波.薄膜科学与技术手册[M].北京:机械工业出版社,1991.3.
  • 3Novoselov, K. S.; Geim, A. K.; Morozov,S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science. 1102896.
  • 4Bolotin, K. I.: Sikes, K. J.; Zhang, Z.; Klima, M.; Fudenberg, G.; Hone, J.: Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351. doi: 10.1016/j.ssc.2008.02.024.
  • 5Schwierz, F. Nat. Nanotech. 2010, 5, 487. doi: 10.1038/nnano. 2010.89.
  • 6Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2012, 327, 662.
  • 7Stankovich, S.: Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969.
  • 8Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.,Wang, E. G.; Dai, H. J. Nat. Nanotech. 2008, 3, 538. doi: 10.1038/nnano.2008.210.
  • 9Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marehenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Phys. Chem. B 2004, 108, 19912. doi: 10.1021/jp040650f.
  • 10Sutter, P. W.; Flege, J. I.; SuRer, E. A. Nat. Mater. 2008, 7, 406. doi: 10.1038/nmat2166.

共引文献46

同被引文献99

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部