期刊文献+

基于大规模训练神经网络的微小故障在线检测 被引量:2

Online Detection of Incipient Fault Based on Large-scale Neural Networks
下载PDF
导出
摘要 神经网络已经广泛应用于系统建模和模式识别领域。但为了逼近未知的参数或者系统动态,需要大量的神经元达到足够的逼近精度,因此导致了计算负荷的增大。运算量制约着大规模神经网络计算,无法使其应用到实际的在线系统中。CPU处理无法保证在线数据的同步运算,需要借助图形处理单元GPU(Graphic Processing Unit)来解决实时性同步运算问题。首先,利用RBF神经网络的持续激励PE(Persistent Excitation)特性对系统输入进行分析,减少神经元的数目且优化设计算法,从而提高逼近精度。其次,基于LabVIEW平台,利用LabVIEW的GPU高性能分析工具包实现神经网络算法和并行计算。最后,在一台航空低速轴流压气机中开发基于大规模训练神经网络的LabVIEW系统。实验结果表明,提出的方法可以实现对系统的在线实时运行,满足航空失速检测的要求。 Neural networks have been widely used for the system modeling and pattern recognition.However,in order to approximate the unknown parameters or system dynamics,it needs enough neurons to achieve sufficiently accurate approximation,which leads to increase of the computational cost.The computation would restrict the online application of the large-scale neural networks.Because CPU processing cannot keep pace with online data capture,the commonly available graphics processors are used for the bulk of data processing in online systems.First,the input of the system was analyzed by persistent excitation characteristics of RBF neural network,reducing the number of neurons and optimizing design optimization algorithm to improve the approximation error.Secondly,LabVIEW and LabVIEW GPU analysis toolkit were used to achieve algorithm implementation and parallel computing.Finally,online experiment of stall detection was conducted in a low speed axial compressor based on LabVIEW.Experimental results show that the proposed method can meet compressors stall detection of online operating system.
作者 司文杰 杨飞飞 SI Wen-jie YANG Fei-fei(School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510641, China School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China)
出处 《计算机科学》 CSCD 北大核心 2017年第2期239-243,266,共6页 Computer Science
基金 国家自然科学基金重点项目(60934001)资助
关键词 神经网络 持续激励 LAB VIEW GPU 大规模计算 在线实验 Neural network Persistent excitation LabVIEW GPU Large-scale computing Online experiment
  • 相关文献

参考文献2

二级参考文献12

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2Stoll T.S,Ruffieux P-A,von Stockar U,et al.Development of an on-line control system for the cultivation of animal cells in a hollow-fiber reactor using flow injection analysis and a visual programming language.Journal of Biotechnology,1996.51(1):37-48.
  • 3Gregory ME,Keay PJ,Dean P,et al.A visual programming environment for bioprocess control.J.Biotechnol,1994,33(3):233-241.
  • 4Turner C,Gregory ME,Thornhill NF.Closed-loop control of fed batch cultures of recombinant E.coli using on-line HPLC.Biotechnol Bioeng,1994,44(7):819-829.
  • 5Rocha I,Ferreira E.C.On-line simultaneous monitoring of glucose and acetate with FIA during high cell density fermentation of recombinant E.coli,Analytica Chimica Acta,2002,462 (2):293-304.
  • 6Michele B,Kellerhals,Birgit Kessler,et al.Closed-loop Control of bacterial high-cell-density fed-batch cultures:production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions,Biotechnology and Bioengineering,1999,65 (3):306~315.
  • 7Lin JQ,Takagi M,Qu YB,et al.Possible strategy for on-line monitoring and control of hybridoma cell culture.Biochemical Engineering Journal,2002(11):205-209.
  • 8林建强,第七章微生物过程的自动控制和最优化:曲音波,林建强,肖敏,现代微生物技术丛书?微生物技术开发原理,化学工业出版社,2005:169-202.
  • 9Feiguo Chen Wei Ge Li Guo Xianfeng He Bo Li Jinghai Li Xipeng Li Xiaowei Wang Xiaolong Yuan.Multi-scale HPC system for multi-scale discrete simulation—Development and application of a supercomputer with 1 Petaflops peak performance in single precision[J].Particuology,2009,7(4):332-335. 被引量:19
  • 10王泽保,巴林凤.LabVIEW与虚拟仪器设计[J].世界仪表与自动化,1999,3(6):68-70. 被引量:11

共引文献97

同被引文献26

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部