期刊文献+

基于L_(2,1)范数稀疏特征选择和超法向量的深度图像序列行为识别 被引量:4

Activity Recognition from Depth Image Sequences Based on L_(2,1)-norm Sparse Feature Selection and Super Normal Vector
下载PDF
导出
摘要 结合L_(2,1)范数稀疏特征选择和超法向量提出了一种新的深度图像序列行为识别方法。首先从深度图像序列中提取超法向量特征;然后利用L_(2,1)范数稀疏特征选择方法从超法向量特征中选择出最具判别性的稀疏特征子集作为特征表示;最后利用线性分类器Liblinear进行分类。在MSR Action3D数据库上的实验结果表明,所提方法使用2%的超法向量特征获得的识别率为94.55%,并且具有比其他方法更高的识别精度。 This paper presented a novel method of activity recognition from depth image sequences based on L_(2,1)-norm sparse feature selection and super normal vector.First,the super normal vector feature is extracted from depth image sequences.Then the most discriminative feature subset is selected from the whole super normal vector feature set based on the method of L_(2,1)-norm sparse feature selection.Finally,the classification is based on Liblinear classifier.Experimental results on MSR Action3 Ddataset show that the proposed method achieves 94.55% of recognition accuracy using only 2% of the whole super normal vector feature,and is superior to the state-of-art methods.
作者 宋相法 张延锋 郑逢斌 SONG Xiang-fa ZHANG Yan-feng ZHENG Feng-bin(School of Computer and Information Engineering, Henan University, Kaifeng 475004, Chin)
出处 《计算机科学》 CSCD 北大核心 2017年第2期306-308,323,共4页 Computer Science
基金 国家自然科学基金(U1504611 61272282) 河南省教育厅科学技术研究重点项目(15A520010)资助
关键词 行为识别 深度图像序列 超法向量 稀疏特征选择 L2 1范数 Activity recognition Depth image sequences Super normal vector Sparse feature selection L(2 1)-norm
  • 相关文献

参考文献6

二级参考文献114

  • 1Gavrila D M. Vision-Based 3-D Tracking of Human in Action. Ph. D Dissertation. Maryland, USA: University of Maryland, 1996.
  • 2Sminchisescu C, Kanaujia A, Li Zhiguo, et al. Conditional Models for Contextual Human Motion Recognition / / Proc of the 10th Inter?national Conference on Computer Vision. Beijing, China, 2005, II: 1808-1815.
  • 3Belongie S, MalikJ, PuzichaJ. Shape Matching and Object Recog?nition Using Shape Context. IEEE Trans on Pattern Analysis and Machin", Intelligence, 2002, 24(4): 509-522.
  • 4Kumar S, Hebert M. Discriminative Random Fields: A Discrimina?tive Framework for Contextual Interaction in Classification / / Proc of the 9th IEEE Conference on Computer Vision. Nice, France, 2003, II: 1150-1157.
  • 5McCallum A, Freitag D, Pereira F. Maximum Entropy Markov Mo?dels for Information Extraction and Segmentation / / Proc of the 17 th International Conference on Machine Learning. Stanford, USA, 2000: 591-598.
  • 6Laptev I, Lindeberg T. Space-Time Interest Points / / Proc of the 9th IEEE Conference on Computer Vision. Nice, France, 2003, I: 432-439.
  • 7Bobick A F, DavisJ W. The Recognition of Human Movement Using Temporal Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23 (3) : 257-267.
  • 8Kellokumpu V, Pietikainen M, HeikkilaJ. Human Activity Recogni?tion Using Sequences of Postures / / Proc of the International Associ?ation for Pattern Recognition Conference on Machine Vision Applica?tions. Tsukuba Science City,Japan, 2005: 570-573.
  • 9Wang Liang, Suter D. Learning and Matching of Dynamic Shape Manifolds for Human Action Recognition. IEEE Trans on Image Pro?cessing, 2007, 16(6): 1646-1661.
  • 10Megavannan V, Agarwal B, Venkatesh B R. Human Action Re?cognition Using Depth Maps / / Proc of the International Conference on Signal Processing and Communications. Bangalore, India, . 2012: 1-5.

共引文献182

同被引文献34

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部