期刊文献+

基于压缩域的脑成像大数据体可视化方法 被引量:2

Volume Rendering Method of Mass Brain Imaging Data Based on Compression Domain
下载PDF
导出
摘要 脑科学是当今国际科技研究的前沿邻域,而对高精度脑成像数据进行可视化是脑神经科学在结构成像方面的基础性需求。针对高精度脑成像数据可视化过程中存在的数据量大以及绘制效率低的问题,提出了基于分类分层矢量量化和完美空间哈希相结合的压缩域可视化方法。首先对体数据进行分块,记录每块的平均值并依据块内体数据的平均梯度值是否为0进行分类;其次运用分层矢量量化对平均梯度值不为0的块进行压缩;然后用分块完美空间哈希技术存储压缩得到两个索引值;最后对上面的压缩体数据进行解码得到恢复体数据,采用分块完美空间哈希对原始体数据与恢复体数据作差得到的残差数据进行压缩。绘制时,只需将压缩得到的数据作为纹理加载到GPU内,即可在GPU内完成实时解压缩绘制。实验结果表明,在保证较好图像重构质量的前提下,该算法减少了数据的存储空间,提高了体可视化的绘制效率,从而可以在单机上处理较大的数据。 Nowadays, brain science is the forefront field of international scientific and technological research, while the visualization of the high-precision brain imaging data is the fundamental requirements of the structural imaging of brain neuroscience. Aiming at the problems of great quantity of data and low efficiency during rendering the brain imaging da- ta,a compression domain visualization algorithm based on the combination of flag based classical hierarchical vector quantization and perfect spatial hashing was put forward. Firstly, the volume data is blocked, the average of each block is recorded and then the blocks are classfied according to their average gradient value. Secondly, the hierarchical vector quantization is used to compress the blocks of whose average gradient is not O. Thirdly, the perfect spatial hashing tech- nology based on blocking is used to store two index values obtained by compressing. Finally, the above compressed data is decompressed to obtain the recovered volume data, and then the perfect spatial hashing based on blocking is applied to compress the differential volume data obtained by making the original volume data minus the recovered volume data. When rendering, the compressed data is reloaded as textures to GPU, then decompression and visualization can be done in real time. The experiment results show that the algorithm reduces the data storage space and improves the compres- sion ratio and can make the single machine handle larger data under the premise of ensuring the better quality of image reconstruction.
作者 时学凯 王文珂 黄辉 李思昆 傅艺绮 SHI Xue-kai WANG Wen-ke HUANG Hui LI Si-kun FU Yi-qi(School of Computer, National University of Defense Technology, Changsha 410073, China Institute of Ocean Science and Engineering, National University of Defense Teehnology, Changsha 410073, China)
出处 《计算机科学》 CSCD 北大核心 2017年第3期27-31,共5页 Computer Science
基金 国家重点基础研究计划(973计划)项目:灵长类神经回路精细结构成像的新方法和新工具(2015CB755604)资助
关键词 体可视化 分类分层矢量量化 完美空间哈希 神经回路 GPU Volume visualization, Flag based classical hierarchical vector quantization, Perfect spatial hashing, Neural circuits, GPU
  • 相关文献

参考文献3

二级参考文献18

  • 1陈为.硬件加速反走样体Splatting算法[J].计算机辅助设计与图形学学报,2005,17(4):677-682. 被引量:5
  • 2陈为.硬件加速的数字化放射图像重建算法[J].计算机辅助设计与图形学学报,2005,17(4):683-688. 被引量:4
  • 3吴仲乐,鲍旭东,罗立民.基于矢量量化压缩的大规模体数据直接绘制[J].东南大学学报(自然科学版),2005,35(3):475-479. 被引量:4
  • 4孙宏伟,顾明,孙家广.改进的基于主分量分析的码书设计算法[J].计算机辅助设计与图形学学报,2005,17(10):2245-2250. 被引量:5
  • 5Leven J, Corso J, Cohen J, et al. Interactive visualization of unstructured grids using hierarchical 3D textures [C]// Proceedings of IEEE]ACM SIGGRAPH Symposium on Volume Visualization and Graphics. Los Alamitos: IEEE Computer Society Press, 2002:37-44.
  • 6Garrity M P. Raytracing irregular volume data [J]. ACM SIGGRAPH Computer Graphics, 1990, 24(5):35-40.
  • 7Callahan S P, Ikits M, Comba J L D, et al. Hardwareassisted visibility sorting for unstructured volume rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(3): 285-295.
  • 8Song Y Y, Chen W, Maciejewski R, ctal. Bivariate transfer functions on unstructured grids [J]. Computer Graphics Forum, 2009, 28(3): 783-790.
  • 9Lefebvre S, Samuel H, Fabrice N. Octree textures on the GPU [M] //GPU gems, vol 2. Boston: Addison-Wesley Professional, 2005:595-613.
  • 10Lefebvre S, Hoppe H. Perfect spatial hashing [J]. ACM Transactions on Graphics, 2006, 25(3): 579-588.

共引文献24

同被引文献15

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部