期刊文献+

中文语音合成系统的设计与实现 被引量:6

Design and Implementation of Chinese Speech Synthesis System
下载PDF
导出
摘要 为了实现机器能够发出声音,本文设计并搭建了HTK(HMM-Tool-Kit)平台用来实现中文语音合成系统.采用参数合成法实现了文本到语音的合成,并对合成系统中的文本分析、韵律控制以及语音合成的实现技术进行了详细的论述.最后在Linux系统下搭建环境并进行实验,得到了预期的结果,实现了文本到语音的转化. In order to realize that machine can make a sound, this paper designs and builds the HTK(HMM-Tool-Kit) platform to realize the Chinese speech synthesis system. The parameter synthesis method realizes the synthesis from text to speech, and this paper has a detailed discussion for the implementation technology of the text analysis, prosody control and speech synthesis in synthetic system. Finally, with experiments under the environment built on the Linux, the expected results are obtained, realizing the transformation from the text to speech.
作者 范会敏 何鑫 FAN Hui-Min HE Xin(School of Computer Science and Engineer, Xi'an Technological University, Xi'an 710021)
出处 《计算机系统应用》 2017年第2期73-77,共5页 Computer Systems & Applications
关键词 HTK 参数合成 HTS HMM模型 STRIGHT合成器 HTK parameter synthesis HTS hidden markov model STRIGHT synthesizer
  • 相关文献

参考文献5

二级参考文献51

  • 1井晓阳,罗飞,王亚棋.汉语语音合成技术综述[J].计算机科学,2012,39(S3):386-390. 被引量:13
  • 2吴义坚,王仁华.基于HMM的可训练中文语音合成[J].中文信息学报,2006,20(4):75-81. 被引量:17
  • 3Hunt A, Black A. Unit selection in a concatenative speech synthesis system using a large speech database. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996, Atlanta. 373--376.
  • 4Wang R H, Ma Z K, Li W, et al. A corpus-based Chinese speech synthesis with contextual dependent unit selection. In: Proceedings of International Conference on Spoken Language Processing, 2000, Beijing. 391--394.
  • 5Donovan R. Trainable speech synthesis. Doctoral Dissertation. Cambridge: Cambridge University, 1996.
  • 6Yoshimura T, Tokuda K, Masuko T, et al. Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis. In: Proceedings of Eurospeech, 1999, Budapest. 2347--2350.
  • 7Tokuda K, Yoshimura T, Masuko T, et al. Speech parameter generation algorithms for HMM-based speech synthesis. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000, Istanbul. 1315--1318.
  • 8Tokuda K, Masuko T, Miyazaki N, et al. Hidden Markov models based on multi-space probability distribution for pitch pattern mod-ling. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999, Phoenix. 229--232.
  • 9Shinoda K, Watanabe T. MDL-based context-dependent subword modeling for speech recognition. J Acoust Soc Jpn (E), 2000, 21 (2): 79--86.
  • 10Ling Z H, Wang R H. HMM-based hierarchical unit selection combining Kullback-Leibler divergence with likelihood criterion. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007, Honolulu. 1245--1248.

共引文献24

同被引文献48

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部