摘要
Tomographic techniques have great abilities to interrogate the combustion processes, especially when it is combined with the physical models of the combustion itself. In this study, a data fusion algorithm is developed to investigate the flame distribution of a swirl-induced environmental(EV) burner, a new type of burner for low NOx combustion. An electric capacitance tomography(ECT) system is used to acquire 3D flame images and computational fluid dynamics(CFD) is applied to calculate an initial distribution of the temperature profile for the EV burner. Experiments were also carried out to visualize flames at a series of locations above the burner. While the ECT images essentially agree with the CFD temperature distribution, discrepancies exist at a certain height. When data fusion is applied, the discrepancy is visibly reduced and the ECT images are improved. The methods used in this study can lead to a new route where combustion visualization can be much improved and applied to clean energy conversion and new burner development.
基金
Financially supported by State Administration of Foreign Experts Affairs for supporting the project‘Overseas Expertise Introduction Program for Disciplines Innovation in Universities’(ref:B13009)
the National Natural Science Foundation of China projects(61571189,61503137,61305056)