期刊文献+

Novel yellow colored flame compositions with superior spectral performance 被引量:4

Novel yellow colored flame compositions with superior spectral performance
下载PDF
导出
摘要 The production of colored flames is the primary purpose of military signaling, projectile tracing, and illuminating devices. Certain elements and compounds when heated to high temperature have the unique property of emitting lines or narrow bands in the visible region(380-780 nm). This study, reports on the development of novel yellow colored flame compositions with enhanced spectral performance in terms of luminous intensity, and color quality to standard Russian yellow tracer. The light intensity and the imprint spectra of developed yellow flares were measured using digital luxmeter and UV e Vis. spectrometer respectively. The main giving of this study is that the light intensity, and color quality of Russian yellow tracer were improved by 287%, and 170% respectively. This was accomplished by means of optimizing the ratio of novel binder to color source using aluminum metal fuel. Aluminumbased formulations were found to maximize the formation of yellow reactive emitting specimens, and to eliminate any interfering incandescent emission resulted from Mg O. Quantification of yellow color emitting specimens in the combustion gaseous products was achieved using chemical equilibrium thermodynamic code named ICT(Institute of Chemical Technology in Germany, Virgin 2008); in an attempt to judge the light quality. This improvement in yellow flare performance established the rule that the emission intensity increases as the reaction temperature increases. In the meantime upper limit of temperature was avoided to maximize the color quality. The production of colored flames is the primary purpose of military signaling, projectile tracing, and illuminating devices. Certain elements and compounds when heated to high temperature have the unique property of emitting lines or narrow bands in the visible region (380-780 nm). This study, reports on the development of novel yellow colored flame compositions with enhanced spectral performance in terms of luminous intensity, and color quality to standard Russian yellow tracer. The light intensity and the imprint spectra of developed yellow flares were measured using digital luxmeter and UV-Vis. spectrometer respectively. The main giving of this study is that the light intensity, and color quality of Russian yellow tracer were improved by 287%, and 170% respectively. This was accomplished by means of optimizing the ratio of novel binder to color source using aluminum metal fuel. Aluminumbased formulations were found to maximize the formation of yellow reactive emitting specimens, and to eliminate any interfering incandescent emission resulted from MgO. Quantification of yellow color emitting specimens in the combustion gaseous products was achieved using chemical equilibrium thermodynamic code named ICT (Institute of Chemical Technology in Germany, Virgin 2008); in an attempt to judge the light quality. This improvement in yellow flare performance established the rule that the emission intensity increases as the reaction temperature increases. In the meantime upper limit of temperature was avoided to maximize the color quality.
出处 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期33-39,共7页 Defence Technology
基金 funding the research project entitled“Enhanced Visible Tracers for Illumination and Tracking”
关键词 PYROTECHNICS Colored flames Yellow tracer Atomic spectroscopy Color quality Pyrotechnics Colored flames Yellow tracer Atomic spectroscopy Color quality
  • 相关文献

同被引文献6

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部