期刊文献+

基于无阀压电微泵控制的微流控液体变色眼镜 被引量:9

Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump
下载PDF
导出
摘要 为了更好地利用变色镜保护人眼不受强光的伤害,提出了一种微流控液体变色眼镜。以透光性良好的高分子聚合物PDMS(polydimethylsiloxane)为材料,采用软刻蚀技术代替传统的机械加工,制作了具有微流道结构的镜片变色层。通过对封接面的表面改性处理实现了PDMS变色层和基底镜片(玻璃/光学树脂)之间的不可逆封接,构成了具有闭合微流道的液体变色镜片。设计并制作了一种无阀压电微泵控制器用以控制镜片微流道内有色液体的循环流动,实现镜片的变色功能。实验测试了微泵在不同驱动电压和驱动频率下变色眼镜的响应特性。测试结果表明:与传统的固体感光变色镜相比,无阀压电微泵控制的微流控液体变色眼镜具有较快的响应速度,较高的可控性和良好的可逆性。 In order to comfort and protect human eyes in an environment with strong lights using color-changing glasses, a microfluidic liquid color-changing glasses is presented. Instead of traditional mechanical machining, soft lithography technology is applied for the fabrication of the color-changing layer made of transparent polymer polydimethylsiloxane (PDMS). Surface modification treatment is used for realizing irreversibly bonding of PDMS color-changing layer with substrate lens (glass/optical resin) to form liquid color-changing lens with closed microfluidic channels. A valveless piezoelectric micro-pump is designed and micromachined, which is used to control the liquid circulation in the channel on the lens to realize color-changing function of the glasses. The color-changing response times of the glasses under different voltage amplitudes and frequencies are tested by experiments. Compared with conventional solid photochromic glasses, the microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump show faster response, higher controllability and better reversibility.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第2期498-503,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51175101)
关键词 流体传动与控制 微流控 液体变色眼镜 无阀压电微泵 软刻蚀 turn and control of fluid microfluidic liquid colour-changing glasses valveless piezoelectric micro-pump soft lithography
  • 相关文献

参考文献5

二级参考文献57

  • 1赵强,崔大付,王利,王海宁,刘长春.无阀压电微泵的动态特性研究[J].压电与声光,2005,27(6):631-633. 被引量:3
  • 2刘国君,程光明,杨志刚.一种压电式精密输液微泵的试验研究[J].光学精密工程,2006,14(4):612-616. 被引量:18
  • 3沙菁,侯丽雅,章维一,朱丽.微流体系统驱动技术的研究进展[J].微纳电子技术,2006,43(12):586-591. 被引量:5
  • 4Stemme E, Stemme G. A valveless diffuser/nozzle-based fluid pump [J]. Sensors and Actuators A, 1993, 39(2): 159-167.
  • 5Woias P.Micropumps-past, progress and future prospects [J]. Sensors and Actuators B, 2005, 105(1): 28-38.
  • 6Zhang H J, Qiu C J. Characterization and MEMS application of low temperature TiNi(Cu) shape memory thin films [J]. Materials Science and Engineering A, 2006 438-440: 1106- 1109.
  • 7Schabmueller C G J, Koch M, Mokhtari M E, Evans A G R, Brunnschweiler A, Sehr H. Self-aligning gas/liquid micropump [J]. Journal of Micromechanics and Microengineering, 2002, 12(4): 420-424.
  • 8Olsson A, Stemme G, Stemme E. A numerical design study of the valveless diffuser pump using a lumped- mass model [J]. Journal of Micromechanics and Microengineering, 1999, 9(1): 34-44.
  • 9Pan L S, Ng T Y, Liu G R, Lam K Y, Jiang T Y. Analytical solutions for the dynamic analysis of a valveless micropump fluid-membrane coupling study [J]. Sensors and Actuators A, 2001, 93 (2): 173- 181.
  • 10Izzo I, Accoto D, Menciassi A, Schmitt L, Dario R Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves [J]. Sensors and Actuators A, 2007, 133(1): 128- 140.

共引文献21

同被引文献41

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部