期刊文献+

一个素变量丢番图问题

A Diophantine Problem with Prime Variables
下载PDF
导出
摘要 设k和r是满足k≥3及r≥Ψ(k)+1的正整数,这里当3≤k≤4时,Ψ(k)=2^(k-1);而当k≥5时,Ψ(k)=1/2k(k+1).假定δ和ε是给定的足够小的正数,λ_1,λ_2,…,λ_(r+1)是不全同号且两两之比不全为有理数的非零实数.对于任意实数η与0<σ<2^(1-2k)/r-1,证明了:存在一个正数序列X→+∞,使得不等式|λ_1p_1~k+λ_2p_2~k+···+λ_rp_r^k+λ_(r+1)p_(r+1)+η|<(max(1≤j≤r+1)p_j)^(-σ)有》■X~(■-(2^(1-2k))/(r-1)+ε组素数解(p_1,p_2,…,p_(r+1)),这里(δX)^(1/k)≤p_j≤X^(1/k)(1≤j≤r)及δX≤p_(r+1)≤X.这改进了之前的结果. Let k and r be positive integers with k≥ 3 and r ≥ψ(k) + 1, where ψ(k) = 2k-1 for 3 ≤ k ≤4, and ψ(k) = ψk(k+1) for k ≥ 5. Suppose that δand ε are fixed and sufficiently small positive numbers, λ1, λ2,.. , λr+1 are nonzero real numbers, not all of the same sign 0〈σ〈2 1-2k/r-1 and not all in rational ratios. Then for any real η and 0 〈 σ 〈 τ-1 2 1-2k, it is proved that there exists a positive sequence X →+∞, such that the inequality |λ1p1k+λ2p2k+…+λτpτk+λτ+1pτ|1+η|〈)1≤j≤τ+1maxpj)-σ has 〉〉Xk-τ-τ-1 2 1-2k+ε prime solutions (p1,p2,… ,Pτ+1) with (δX)k/1≤pj≤Xk/1(1≤j≤τ) and εX≤pτ+1≤X. This gives an improvement of an earlier result.
作者 牟全武 吕晓东 MU Quanwu LU Xiaodong(College of Science, Xi'an Polytechnic University, Xi'an 710048, China School of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2017年第1期31-42,共12页 Chinese Annals of Mathematics
基金 陕西省自然科学基础研究计划(No.2016JM1013) 西安工程大学博士科研启动基金(No.BS1508) 西安工程大学基础课程质量提升项目(高等数学)的资助
关键词 丢番图不等式 Davenport-Heilbronn方法 素数 Diophantine inequalities, Davenport-Heilbronn method, Prime
  • 相关文献

参考文献2

二级参考文献11

  • 1Danicic I. On the integral part of a linear form with prime variables [J]. Canadian J Math, 1966, 18:621-628.
  • 2Davenport H, Heilbronn H. On indefinite quadratic forms in five variables [J]. Journal of London Math Soc, 1946, 21:185-193.
  • 3Vaughan R C. Diophantine approximation by prime numbers I [J]. Proc London Math Soc, 1974, 28:373-384.
  • 4Wang T Z, Chen J R. On estimation of linear trigonometrical sums with primes [J]. Acta Math Sinica, 1994, 37:25-31.
  • 5Ghosh A. The distribution αp2 modulo one [J]. Proc London Math Soc, 1981, 42:252 269.
  • 6Danicic I., On the integral part of a linear form with prime variables, Canadian J. Math., 1966, 18: 621-628.
  • 7Davenport H., Heilbronn H., On indefinite quadratic forms in five variables, Journal of London Math. Soc., 1946, 21: 185-193.
  • 8Harman G., Trigonometric sums over primes I, Mathematika, 1981, 28: 249-254.
  • 9Li W. P., Wang T. Z., The integral part of a nonlinear form with three squares of primes, Chinese Annals of Mathematics, 2011, 32(6): 753-762.
  • 10Vaughan R. C., Diophantine approximation by prime numbers (I), Proc. London Math. Soc., 1974, 28: 373-384.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部