摘要
设k和r是满足k≥3及r≥Ψ(k)+1的正整数,这里当3≤k≤4时,Ψ(k)=2^(k-1);而当k≥5时,Ψ(k)=1/2k(k+1).假定δ和ε是给定的足够小的正数,λ_1,λ_2,…,λ_(r+1)是不全同号且两两之比不全为有理数的非零实数.对于任意实数η与0<σ<2^(1-2k)/r-1,证明了:存在一个正数序列X→+∞,使得不等式|λ_1p_1~k+λ_2p_2~k+···+λ_rp_r^k+λ_(r+1)p_(r+1)+η|<(max(1≤j≤r+1)p_j)^(-σ)有》■X~(■-(2^(1-2k))/(r-1)+ε组素数解(p_1,p_2,…,p_(r+1)),这里(δX)^(1/k)≤p_j≤X^(1/k)(1≤j≤r)及δX≤p_(r+1)≤X.这改进了之前的结果.
Let k and r be positive integers with k≥ 3 and r ≥ψ(k) + 1, where ψ(k) = 2k-1 for 3 ≤ k ≤4, and ψ(k) = ψk(k+1) for k ≥ 5. Suppose that δand ε are fixed and sufficiently small positive numbers, λ1, λ2,.. , λr+1 are nonzero real numbers, not all of the same sign 0〈σ〈2 1-2k/r-1 and not all in rational ratios. Then for any real η and 0 〈 σ 〈 τ-1 2 1-2k, it is proved that there exists a positive sequence X →+∞, such that the inequality |λ1p1k+λ2p2k+…+λτpτk+λτ+1pτ|1+η|〈)1≤j≤τ+1maxpj)-σ has 〉〉Xk-τ-τ-1 2 1-2k+ε prime solutions (p1,p2,… ,Pτ+1) with (δX)k/1≤pj≤Xk/1(1≤j≤τ) and εX≤pτ+1≤X. This gives an improvement of an earlier result.
作者
牟全武
吕晓东
MU Quanwu LU Xiaodong(College of Science, Xi'an Polytechnic University, Xi'an 710048, China School of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2017年第1期31-42,共12页
Chinese Annals of Mathematics
基金
陕西省自然科学基础研究计划(No.2016JM1013)
西安工程大学博士科研启动基金(No.BS1508)
西安工程大学基础课程质量提升项目(高等数学)的资助