摘要
An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.
An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.
基金
supported by the National Science&Technology Pillar Program(2013BAF07B03)
Zhejiang Provincial Natural Science Foundation of China(LY13F010009)