摘要
为降低噪声以及偏移场的影响,提出一种基于非局部空间信息的FCM模型。引入非局部信息,克服传统的空间信息仅依赖邻域灰度信息,导致精度不高的缺点,使其在降低噪声影响的同时保持细长拓扑结构区域信息;利用多元高斯分布模型对图像灰度分布进行拟合,构造距离函数,降低传统欧式距离导致鲁棒性不足的影响;利用基函数的线性组合对偏移场进行拟合,将偏移场参数化并耦合到FCM框架下,降低灰度不均匀对分割的影响。实验结果表明,该模型可以得到更精确的分割结果。
To reduce the impact of noise and bias field,a FCM model based on non-local spatial information was proposed.The non-local information was integrated into the model,reducing the impact of noise as well as keeping the image structures.The image gray scale distribution was fitted using the multivariate Gaussian distribution and the distance function was constructed to reduce the effects of lacking robustness caused by the traditional Euclidean distance.To overcome the impact of intensity inhomogeneity,the bias field was approximated at the pixel-by-pixel level by using a linear combination of basis functions,and parameterized using the coefficients of the basis functions.Experimental results of the brain MR images show that the proposed method can obtain more accurate results when segmenting images with noise and bias field.
出处
《计算机工程与设计》
北大核心
2017年第3期671-676,共6页
Computer Engineering and Design
基金
江苏省自然科学基金项目(BY2014007-04)
关键词
模糊C均值
非局部信息
高斯分布
基函数
噪声
偏移场
fuzzy C means
non-local information
Gaussian distribution
basis functions
noise
bias field