期刊文献+

产品方案优选的区间二型模糊VIKOR法 被引量:7

Interval Type-2 Fuzzy VIKOR Method of Product Scheme Selection
下载PDF
导出
摘要 由于传统一型模糊集的隶属度难以给出精确值,因此采用区间二型模糊集理论对VIKOR方法进行扩展从而建立产品方案的决策优选模型。首先介绍了区间二型模糊数的概念,并结合积分法和区间模糊数比较法定义了一种排序方法,在此基础上实现传统VIKOR算法的扩展。为保证信息的准确性、有效性,在扩展VIKOR算法的整个过程中都未使用解模糊技术,而始终保持评估值的模糊性。产品最优方案根据VIKOR综合指标的排序来选择,其中"群体效益"和"最大个别遗憾"的决策权重由决策者偏好决定。最后,以轨道车辆门产品的方案评价为例,证明所提方法的可行性和有效性。 As it is difficult to determine exact membership function of the traditional type-1 fuzzy sets, so the product scheme evaluation model was established using VIKOR method extended by interval type-2 fuzzy set theory. Firstly, the concepts was introduced, and a new ranking method was defined which combine the integration algorithm with the comparative law of interval fuzzy number. Then,VIKOR method was extended based on the above. To ensure accuracy and validity, maintain the ambiguity of evaluation values, defuzzification technology was not used in the whole process of the extended VIKOR algorithm. Product optimal scheme was determined by the ranking of VIKOR composite index, where the decision weights of "community benefit" and "maximum individual regret" were decided by the decision makers' preferences. Finally, the proposed method was applied to evaluate the alternatives of rail vehicle door product, which proved the feasibility and effectiveness of the method.
出处 《机械设计与制造》 北大核心 2017年第3期11-15,共5页 Machinery Design & Manufacture
基金 国家自然科学基金(51505211) 辽宁省自然科学基金(2015020134) 南京工程学院引进人才科研启动基金(YKJ201301)
关键词 产品方案评价 区间二型模糊集 VIKOR算法 多属性决策 Product Scheme Evaluation Interval Type-2 Fuzzy Sets VIKOR Algorithm Multi-Criteria Decision Making(MCDM)
  • 相关文献

参考文献3

二级参考文献34

  • 1蔡宇隽,杜宇人.图像分割实用技术研究[J].现代电子技术,2005,28(16):64-66. 被引量:2
  • 2杨晖.图像分割的阈值法研究[J].辽宁大学学报(自然科学版),2006,33(2):135-137. 被引量:45
  • 3Nalwa V S, Binford T O.On detection edges[J].lEEE Trans on Pattern Analysis and Machine Intelligence, 1986,8 (6) : 699-714.
  • 4Canny J.A computational approach to edge detection[J].IEEETrans on Pattern Analysis and Machine Intelligence, 1986,8(6): 679-698.
  • 5Chanda B, Kundu M K K, Padmaha V Y..A multi-scale morphologic edge detector[J].Pattem Recognition, 1998,31(10) :1469-1478.
  • 6Vincken K L, Koste A S E.Probabilistic multistage image seg- mentation[J].IEEE Trans on Pattern Analysis and Machine Intel- ligence, 1997,12(2) .. 109-120.
  • 7Legault R, Suen C Y.Optimal local weighted averaging meth- ods in contour smoothing[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19: 801-817.
  • 8Serra J.A lattice approach to image segmentation[J].Journal of Mathematical Imaging and Vision, 2006,24: 83-130.
  • 9Zhang H,Fritts J E,Goldman S A.Image segmentation evaluation: a survey of unsupervised methods[J].Computer Vision and Im- age Understanding,2008,110:260-280.
  • 10Zhang Y J.A survey on evaluation methods for image segmen- tation[J].Pattern Recognition, 1996,29:1335-1346.

共引文献28

同被引文献63

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部