期刊文献+

因素空间理论的因素约简算法 被引量:1

Factor reduction and data mining based on factor space
下载PDF
导出
摘要 为讨论差转计算在多因素决策问题中对因素系统的约简性能,通过理论分析与实证检验,在算法原理与机制的基础上深入讨论了算法的因素约简能力,并与基于差别矩阵的粗糙集因素约简算法进行比较.研究结果表明:差转计算在进行决策的过程中,确保了对结果有重要影响的因素进入经验推理系统,影响不大的因素在决策的过程中自动地被舍弃,从而实现了因素的约简.在6个UCI数据集上,通过对因素约简结果与时间复杂度两个方面的讨论,得出差转计算的因素约简能力同差别矩阵算法相当,在时间复杂度方面远优于差别矩阵算法. In order to discuss the effectiveness of factor system reduction of Subtraction Rotation in multi-factor decision problems, by theory analysis and demonstration test, this paper discussed the ability of factor reduction in depth on basis of algorithm principle and mechanism, and then compared it with rough set algorithm based on different matrix. The results show that in the decision process, Subtraction Rotation is sure of putting factors that have important effect on experience reasoning system, while automatically dropping factors that have little effect, thus achieves the reduction goal. In 6 UCI data sets, this study discussed the results and time complexity, and obtained the conclusion that the ability SR for factor reduction is equal to that of different matrix algorithm, but Subtraction Rotation is better in time complexity.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2017年第2期219-224,共6页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金项目(61350003) 辽宁省教育厅科学技术研究一般基金项目(L2014133)
关键词 因素约简 差转计算 粗糙集因素约简算法 算法比较 UCI数据 factor reduction Subtraction & Rotation rough set factor reduction algorithm algorithm comparison UCI data
  • 相关文献

参考文献6

二级参考文献28

  • 1汪培庄.因素空间与因素库[J].辽宁工程技术大学学报(自然科学版),2013,32(10):1297-1304. 被引量:61
  • 2闫德勤.不相容信息系统的规范格式与差别矩阵[J].计算机工程与应用,2004,40(36):45-46. 被引量:15
  • 3曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 4王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 5Pawlak Z.Rough sets[J].International Journal of Computer and Information Science,1982,11(5):341-356
  • 6Skowron A,Rauszer C.The discernibility matrices and functions in information systems[A].Slowinski R.Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory[C].1992:331-362.
  • 7Hu Xiaohua,Cercone N.Learning in relational databases:A rough set approach[J].Computational Intelligence,1995,11 (2):323 -337.
  • 8Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences, 1982( 11 ) :341-356.
  • 9Hu X H,Cercone N.Learning in relational databases:a rough set approach[J].Computational Intelligence, 1995,11 (2) :323-337.
  • 10MehmedKantardric.数据挖掘:概念、模型、方法和算法[M].北京:清华大学出版社.2013.

共引文献888

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部